Documentation Verification Report

Generator

📁 Source: Mathlib/Algebra/Category/ModuleCat/Presheaf/Generator.lean

Statistics

MetricCount
DefinitionsfreeYoneda, fromFreeYoneda, elementsMk, freeYoneda, freeYonedaCoproduct, freeYonedaCoproductMk, freeYonedaCoproductsCokernelCofork, freeYonedaEquiv, fromFreeYonedaCoproduct, isColimitFreeYonedaCoproductsCokernelCofork, toFreeYonedaCoproduct, ιFreeYonedaCoproduct
12
TheoremsfromFreeYoneda_app_apply, instSmall, isDetecting, isSeparating, freeYonedaEquiv_comp, freeYonedaEquiv_symm_app, fromFreeYonedaCoproduct_app_mk, instEpiFromFreeYonedaCoproduct, toFreeYonedaCoproduct_fromFreeYonedaCoproduct, toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, wellPowered, ι_fromFreeYonedaCoproduct, ι_fromFreeYonedaCoproduct_apply, ι_fromFreeYonedaCoproduct_assoc
14
Total26

PresheafOfModules

Definitions

NameCategoryTheorems
elementsMk 📖CompOp
freeYoneda 📖CompOp
3 mathmath: freeYoneda.isSeparating, freeYoneda.isDetecting, freeYoneda.instSmall
freeYonedaCoproduct 📖CompOp
7 mathmath: toFreeYonedaCoproduct_fromFreeYonedaCoproduct, ι_fromFreeYonedaCoproduct, toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, ι_fromFreeYonedaCoproduct_assoc, instEpiFromFreeYonedaCoproduct, ι_fromFreeYonedaCoproduct_apply, fromFreeYonedaCoproduct_app_mk
freeYonedaCoproductMk 📖CompOp
1 mathmath: fromFreeYonedaCoproduct_app_mk
freeYonedaCoproductsCokernelCofork 📖CompOp
freeYonedaEquiv 📖CompOp
2 mathmath: freeYonedaEquiv_symm_app, freeYonedaEquiv_comp
fromFreeYonedaCoproduct 📖CompOp
7 mathmath: toFreeYonedaCoproduct_fromFreeYonedaCoproduct, ι_fromFreeYonedaCoproduct, toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, ι_fromFreeYonedaCoproduct_assoc, instEpiFromFreeYonedaCoproduct, ι_fromFreeYonedaCoproduct_apply, fromFreeYonedaCoproduct_app_mk
isColimitFreeYonedaCoproductsCokernelCofork 📖CompOp
toFreeYonedaCoproduct 📖CompOp
2 mathmath: toFreeYonedaCoproduct_fromFreeYonedaCoproduct, toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc
ιFreeYonedaCoproduct 📖CompOp
3 mathmath: ι_fromFreeYonedaCoproduct, ι_fromFreeYonedaCoproduct_assoc, ι_fromFreeYonedaCoproduct_apply

Theorems

NameKindAssumesProvesValidatesDepends On
freeYonedaEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
PresheafOfModules
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
free
CategoryTheory.yoneda
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
Opposite.op
RingCat.ring
obj
EquivLike.toFunLike
Equiv.instEquivLike
freeYonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Hom.app
freeYonedaEquiv_symm_app 📖mathematicalDFunLike.coe
obj
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
PresheafOfModules
instCategory
free
CategoryTheory.yoneda
Opposite.op
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
RingCat.ring
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Hom.app
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
freeYonedaEquiv
ModuleCat.freeMk
CategoryTheory.CategoryStruct.id
Opposite.unop
ModuleCat.freeDesc_apply
CategoryTheory.op_id
CategoryTheory.Functor.map_id
fromFreeYonedaCoproduct_app_mk 📖mathematicalDFunLike.coe
obj
freeYonedaCoproduct
Opposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
Ab
AddCommGrpCat.instCategory
PresheafOfModules
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
toPresheaf
CategoryTheory.forget
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
RingCat.ring
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Hom.app
fromFreeYonedaCoproduct
freeYonedaCoproductMk
ι_fromFreeYonedaCoproduct_apply
Elements.fromFreeYoneda_app_apply
instEpiFromFreeYonedaCoproduct 📖mathematicalCategoryTheory.Epi
PresheafOfModules
instCategory
freeYonedaCoproduct
fromFreeYonedaCoproduct
epi_of_surjective
toFreeYonedaCoproduct_fromFreeYonedaCoproduct 📖mathematicalCategoryTheory.CategoryStruct.comp
PresheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
freeYonedaCoproduct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
fromFreeYonedaCoproduct
hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
RingCat.ring
ModuleCat.moduleCategory
evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
toFreeYonedaCoproduct
instZeroHom
hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Category.assoc
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.comp_zero
toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
PresheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
freeYonedaCoproduct
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
fromFreeYonedaCoproduct
hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
RingCat.ring
ModuleCat.moduleCategory
evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
toFreeYonedaCoproduct
instZeroHom
hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toFreeYonedaCoproduct_fromFreeYonedaCoproduct
wellPowered 📖mathematicalCategoryTheory.WellPowered
PresheafOfModules
instCategory
CategoryTheory.locallySmall_of_univLE
UnivLE.self
CategoryTheory.wellPowered_of_isDetecting
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
hasFiniteLimits
freeYoneda.instSmall
CategoryTheory.locallySmall_of_univLE
UnivLE.self
freeYoneda.isDetecting
ι_fromFreeYonedaCoproduct 📖mathematicalCategoryTheory.CategoryStruct.comp
PresheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
Elements.freeYoneda
freeYonedaCoproduct
ιFreeYonedaCoproduct
fromFreeYonedaCoproduct
Elements.fromFreeYoneda
CategoryTheory.Limits.Sigma.ι_desc
ι_fromFreeYonedaCoproduct_apply 📖mathematicalDFunLike.coe
obj
freeYonedaCoproduct
ModuleCat.carrier
RingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
RingCat.ring
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Hom.app
fromFreeYonedaCoproduct
Elements.freeYoneda
ιFreeYonedaCoproduct
Elements.fromFreeYoneda
CategoryTheory.Functor.congr_map
ι_fromFreeYonedaCoproduct
ι_fromFreeYonedaCoproduct_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
PresheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
Elements.freeYoneda
freeYonedaCoproduct
ιFreeYonedaCoproduct
fromFreeYonedaCoproduct
Elements.fromFreeYoneda
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_fromFreeYonedaCoproduct

PresheafOfModules.Elements

Definitions

NameCategoryTheorems
freeYoneda 📖CompOp
4 mathmath: PresheafOfModules.ι_fromFreeYonedaCoproduct, PresheafOfModules.ι_fromFreeYonedaCoproduct_assoc, fromFreeYoneda_app_apply, PresheafOfModules.ι_fromFreeYonedaCoproduct_apply
fromFreeYoneda 📖CompOp
4 mathmath: PresheafOfModules.ι_fromFreeYonedaCoproduct, PresheafOfModules.ι_fromFreeYonedaCoproduct_assoc, fromFreeYoneda_app_apply, PresheafOfModules.ι_fromFreeYonedaCoproduct_apply

Theorems

NameKindAssumesProvesValidatesDepends On
fromFreeYoneda_app_apply 📖mathematicalDFunLike.coe
PresheafOfModules.obj
freeYoneda
Opposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
Ab
AddCommGrpCat.instCategory
PresheafOfModules
PresheafOfModules.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
PresheafOfModules.toPresheaf
CategoryTheory.forget
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
RingCat.ring
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
PresheafOfModules.Hom.app
fromFreeYoneda
ModuleCat.freeMk
CategoryTheory.yoneda
Opposite.unop
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
PresheafOfModules.freeYonedaEquiv_symm_app

PresheafOfModules.freeYoneda

Theorems

NameKindAssumesProvesValidatesDepends On
instSmall 📖mathematicalCategoryTheory.ObjectProperty.Small
PresheafOfModules
PresheafOfModules.instCategory
PresheafOfModules.freeYoneda
CategoryTheory.ObjectProperty.instSmallOfObjOfSmall
UnivLE.small
UnivLE.self
isDetecting 📖mathematicalCategoryTheory.ObjectProperty.IsDetecting
PresheafOfModules
PresheafOfModules.instCategory
PresheafOfModules.freeYoneda
CategoryTheory.ObjectProperty.IsSeparating.isDetecting
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
PresheafOfModules.instIsNormalMonoCategory
isSeparating
isSeparating 📖mathematicalCategoryTheory.ObjectProperty.IsSeparating
PresheafOfModules
PresheafOfModules.instCategory
PresheafOfModules.freeYoneda
PresheafOfModules.hom_ext
ModuleCat.hom_ext
LinearMap.ext
Equiv.surjective

---

← Back to Index