Documentation Verification Report

Monoidal

šŸ“ Source: Mathlib/Algebra/Category/ModuleCat/Presheaf/Monoidal.lean

Statistics

MetricCount
DefinitionstensorHom, tensorObj, tensorObjMap, monoidalCategory, monoidalCategoryStruct, instCommRingCarrierObjOppositeRingCatCompCommRingCatForgetā‚‚RingHomCarrier
6
TheoremstensorHom_app, tensorObj_map_tmul, tensorObj_obj
3
Total9

PresheafOfModules

Definitions

NameCategoryTheorems
monoidalCategory šŸ“–CompOp—
monoidalCategoryStruct šŸ“–CompOp—

PresheafOfModules.Monoidal

Definitions

NameCategoryTheorems
tensorHom šŸ“–CompOp
1 mathmath: tensorHom_app
tensorObj šŸ“–CompOp
3 mathmath: tensorObj_obj, tensorObj_map_tmul, tensorHom_app
tensorObjMap šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
tensorHom_app šŸ“–mathematical—PresheafOfModules.Hom.app
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
RingCat
RingCat.instCategory
CategoryTheory.forgetā‚‚
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
tensorObj
tensorHom
CategoryTheory.MonoidalCategoryStruct.tensorHom
ModuleCat
CategoryTheory.Functor.obj
ModuleCat.moduleCategory
CommRing.toRing
instCommRingCarrierObjOppositeRingCatCompCommRingCatForgetā‚‚RingHomCarrier
ModuleCat.MonoidalCategory.instMonoidalCategoryStruct
PresheafOfModules.obj
——
tensorObj_map_tmul šŸ“–mathematical—DFunLike.coe
LinearMap
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
Ring.toSemiring
CommRing.toRing
CommRingCat.commRing
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
PresheafOfModules.obj
CategoryTheory.Functor.comp
RingCat
RingCat.instCategory
CategoryTheory.forgetā‚‚
RingHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
tensorObj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
RingCat.Hom.hom
CategoryTheory.Functor.map
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
CategoryTheory.MonoidalCategoryStruct.tensorObj
instCommRingCarrierObjOppositeRingCatCompCommRingCatForgetā‚‚RingHomCarrier
ModuleCat.MonoidalCategory.instMonoidalCategoryStruct
CommRingCat.Hom.hom
LinearMap.instFunLike
ModuleCat.Hom.hom
PresheafOfModules.map
TensorProduct.tmul
ModuleCat.instModuleCarrierObjRestrictScalars
CategoryTheory.ConcreteCategory.hom
ModuleCat.instConcreteCategoryLinearMapIdCarrier
——
tensorObj_obj šŸ“–mathematical—PresheafOfModules.obj
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
RingCat
RingCat.instCategory
CategoryTheory.forgetā‚‚
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
tensorObj
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CategoryTheory.Functor.obj
ModuleCat.moduleCategory
CommRing.toRing
instCommRingCarrierObjOppositeRingCatCompCommRingCatForgetā‚‚RingHomCarrier
ModuleCat.MonoidalCategory.instMonoidalCategoryStruct
——

(root)

Definitions

NameCategoryTheorems
instCommRingCarrierObjOppositeRingCatCompCommRingCatForgetā‚‚RingHomCarrier šŸ“–CompOp
3 mathmath: PresheafOfModules.Monoidal.tensorObj_obj, PresheafOfModules.Monoidal.tensorObj_map_tmul, PresheafOfModules.Monoidal.tensorHom_app

---

← Back to Index