Documentation Verification Report

Sheafify

📁 Source: Mathlib/Algebra/Category/ModuleCat/Presheaf/Sheafify.lean

Statistics

MetricCount
Definitionssmul, SMulCandidate, mk', x, instUniqueSMulCandidate, smul, smulCandidate, sheafify, sheafifyHomEquiv, sheafifyHomEquiv', sheafifyMap, toSheafify
12
TheoremsisCompatible_map_smul, isCompatible_map_smul_aux, h, add_smul, app_eq_of_isLocallyInjective, instNonemptySMulCandidate, instSubsingletonSMulCandidate, map_smul, map_smul_eq, mul_smul, one_smul, smul_add, smul_zero, zero_smul, comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom, instIsLocallyInjectiveToSheafify, instIsLocallySurjectiveToSheafify, sheafifyMap_val, toPresheaf_map_toSheafify, toSheafify_app_apply, toSheafify_app_apply'
21
Total33

CategoryTheory.Presieve.FamilyOfElements

Definitions

NameCategoryTheorems
smul 📖CompOp
1 mathmath: isCompatible_map_smul

Theorems

NameKindAssumesProvesValidatesDepends On
isCompatible_map_smul 📖mathematicalCategoryTheory.Presheaf.IsSeparated
AddCommGrpCat
AddCommGrpCat.instCategory
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
IsAmalgamation
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.types
CategoryTheory.forget
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
map
CategoryTheory.Functor.whiskerRight
Ab
PresheafOfModules.presheaf
Compatible
smul
RingCat.comp_apply
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.naturality_apply
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.op_comp
isCompatible_map_smul_aux
isCompatible_map_smul_aux 📖mathematicalCategoryTheory.Presheaf.IsSeparated
AddCommGrpCat
AddCommGrpCat.instCategory
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
Opposite.op
RingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.opposite
Ab
PresheafOfModules.presheaf
PresheafOfModules.obj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
RingCat.Hom.hom
ModuleCat.carrier
LinearMap
RingHom.id
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
PresheafOfModules.map
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
PresheafOfModules.Sheafify.app_eq_of_isLocallyInjective
CategoryTheory.Functor.map_comp
RingCat.comp_apply
CategoryTheory.NatTrans.naturality
AddCommGrpCat.coe_comp
CategoryTheory.NatTrans.naturality_apply
PresheafOfModules.map_smul

PresheafOfModules

Definitions

NameCategoryTheorems
sheafify 📖CompOp
7 mathmath: instIsLocallySurjectiveToSheafify, toSheafify_app_apply', toPresheaf_map_toSheafify, sheafifyMap_val, comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom, instIsLocallyInjectiveToSheafify, toSheafify_app_apply
sheafifyHomEquiv 📖CompOp
sheafifyHomEquiv' 📖CompOp
1 mathmath: comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom
sheafifyMap 📖CompOp
2 mathmath: sheafification_map, sheafifyMap_val
toSheafify 📖CompOp
5 mathmath: instIsLocallySurjectiveToSheafify, toSheafify_app_apply', toPresheaf_map_toSheafify, instIsLocallyInjectiveToSheafify, toSheafify_app_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom 📖mathematicalCategoryTheory.Presheaf.IsSheaf
Ab
AddCommGrpCat.instCategory
presheaf
CategoryTheory.Sheaf.val
RingCat
RingCat.instCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
AddCommGrpCat
CategoryTheory.Functor.obj
PresheafOfModules
instCategory
toPresheaf
CategoryTheory.Functor.map
SheafOfModules.val
sheafify
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
restrictScalars
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
sheafifyHomEquiv'
CategoryTheory.Functor.congr_map
Equiv.apply_symm_apply
instIsLocallyInjectiveToSheafify 📖mathematicalIsLocallyInjective
CategoryTheory.Functor.obj
PresheafOfModules
CategoryTheory.Sheaf.val
RingCat
RingCat.instCategory
instCategory
restrictScalars
SheafOfModules.val
sheafify
toSheafify
instIsLocallySurjectiveToSheafify 📖mathematicalIsLocallySurjective
CategoryTheory.Functor.obj
PresheafOfModules
CategoryTheory.Sheaf.val
RingCat
RingCat.instCategory
instCategory
restrictScalars
SheafOfModules.val
sheafify
toSheafify
sheafifyMap_val 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
Ab
AddCommGrpCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
PresheafOfModules
instCategory
toPresheaf
CategoryTheory.Sheaf.val
AddCommGrpCat
CategoryTheory.Functor.map
presheaf
CategoryTheory.Sheaf.Hom.val
SheafOfModules.Hom.val
sheafify
sheafifyMap
homMk
RingCat
RingCat.instCategory
SheafOfModules.val
toPresheaf_map_toSheafify 📖mathematicalCategoryTheory.Functor.map
PresheafOfModules
instCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
Ab
AddCommGrpCat.instCategory
CategoryTheory.Functor.category
toPresheaf
CategoryTheory.Functor.obj
CategoryTheory.Sheaf.val
RingCat
RingCat.instCategory
restrictScalars
SheafOfModules.val
sheafify
toSheafify
toSheafify_app_apply 📖mathematicalDFunLike.coe
LinearMap
RingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
Ring.toSemiring
RingCat.ring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
obj
PresheafOfModules
CategoryTheory.Sheaf.val
instCategory
restrictScalars
SheafOfModules.val
sheafify
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.Hom.hom
Hom.app
toSheafify
Ab
AddCommGrpCat.instCategory
presheaf
AddCommGrpCat
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.NatTrans.app
toSheafify_app_apply' 📖mathematicalDFunLike.coe
LinearMap
RingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
Ring.toSemiring
RingCat.ring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
obj
ModuleCat
CategoryTheory.Sheaf.val
ModuleCat.moduleCategory
ModuleCat.restrictScalars
RingCat.Hom.hom
CategoryTheory.NatTrans.app
SheafOfModules.val
sheafify
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
PresheafOfModules
instCategory
restrictScalars
LinearMap.instFunLike
ModuleCat.Hom.hom
Hom.app
toSheafify
Ab
AddCommGrpCat.instCategory
presheaf
AddCommGrpCat
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier

PresheafOfModules.Sheafify

Definitions

NameCategoryTheorems
SMulCandidate 📖CompData
2 mathmath: instSubsingletonSMulCandidate, instNonemptySMulCandidate
instUniqueSMulCandidate 📖CompOp
smul 📖CompOp
8 mathmath: add_smul, map_smul_eq, smul_add, one_smul, zero_smul, smul_zero, map_smul, mul_smul
smulCandidate 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
add_smul 📖mathematicalsmul
RingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
RingCat.ring
AddCommGrpCat.carrier
AddCommGrpCat
AddCommGrpCat.instCategory
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
AddCommGrpCat.str
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
AddMonoidHom.map_add
map_smul_eq
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
add_smul
AddMonoidHom.instAddMonoidHomClass
app_eq_of_isLocallyInjective 📖mathematicalCategoryTheory.Presheaf.IsSeparated
AddCommGrpCat
AddCommGrpCat.instCategory
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
Opposite.op
RingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.NatTrans.app
Ab
PresheafOfModules.presheaf
ModuleCat.carrier
PresheafOfModules.obj
SMulZeroClass.toSMul
AddZero.toZero
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Presheaf.equalizerSieve_mem
CategoryTheory.NatTrans.naturality_apply
PresheafOfModules.map_smul
instNonemptySMulCandidate 📖mathematicalSMulCandidateCategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.Presieve.FamilyOfElements.restrict_map
CategoryTheory.Presieve.isAmalgamation_restrict
CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_map_localPreimage
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
CategoryTheory.Presheaf.IsSheaf.isSheafFor
CategoryTheory.Sheaf.cond
CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul
CategoryTheory.Sheaf.isSeparated
CategoryTheory.Presieve.IsSheafFor.isAmalgamation
instSubsingletonSMulCandidate 📖mathematicalSMulCandidateCategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
map_smul 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.val
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.Functor.map
smul
RingCat
RingCat.instCategory
RingCat.carrier
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Functor.map_comp
map_smul_eq
RingCat.comp_apply
map_smul_eq 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Ab
AddCommGrpCat.instCategory
PresheafOfModules.presheaf
AddCommGrpCat
AddCommGrpCat.carrier
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
smul
ModuleCat.carrier
PresheafOfModules.obj
SMulZeroClass.toSMul
AddZero.toZero
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
SMulCandidate.h
mul_smul 📖mathematicalsmul
RingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
RingCat.ring
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
map_smul_eq
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
SemigroupAction.mul_smul
one_smul 📖mathematicalsmul
RingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
RingCat.ring
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
CategoryTheory.Presheaf.imageSieve_mem
map_smul_eq
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_smul
smul_add 📖mathematicalsmul
AddCommGrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.val
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
AddCommGrpCat.str
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
AddMonoidHom.map_add
map_smul_eq
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
smul_add
smul_zero 📖mathematicalsmul
AddCommGrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.val
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGrpCat.str
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
CategoryTheory.Presheaf.imageSieve_mem
AddMonoidHom.map_zero
map_smul_eq
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
smul_zero
zero_smul 📖mathematicalsmul
RingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
RingCat.ring
AddCommGrpCat.carrier
AddCommGrpCat
AddCommGrpCat.instCategory
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGrpCat.str
CategoryTheory.Sheaf.isSeparated
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
AddCommGrpCat.forget_isCorepresentable
CategoryTheory.Presheaf.imageSieve_mem
map_smul_eq
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_smul
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
AddMonoidHom.map_zero

PresheafOfModules.Sheafify.SMulCandidate

Definitions

NameCategoryTheorems
mk' 📖CompOp
x 📖CompOp
1 mathmath: h

Theorems

NameKindAssumesProvesValidatesDepends On
h 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Ab
AddCommGrpCat.instCategory
PresheafOfModules.presheaf
AddCommGrpCat
AddCommGrpCat.carrier
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
x
ModuleCat.carrier
PresheafOfModules.obj
SMulZeroClass.toSMul
AddZero.toZero
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule

---

← Back to Index