Documentation Verification Report

Generators

πŸ“ Source: Mathlib/Algebra/Category/ModuleCat/Sheaf/Generators.lean

Statistics

MetricCount
DefinitionsGenerators, GeneratingSections, I, IsFiniteType, equivOfIso, ofEpi, s, Ο€, IsFiniteType, LocalGeneratorsData, I, IsFiniteType, X, generators, localGeneratorsDataOfIsFiniteType
15
Theoremsfinite, epi, ofEpi_I, ofEpi_s, ofEpi_Ο€, opEpi_comp, opEpi_id, exists_localGeneratorsData, isFiniteType, coversTop
10
Total25

Algebra

Definitions

NameCategoryTheorems
Generators πŸ“–CompData
1 mathmath: FiniteType.iff_exists_generators

SheafOfModules

Definitions

NameCategoryTheorems
GeneratingSections πŸ“–CompDataβ€”
IsFiniteType πŸ“–CompData
1 mathmath: instIsFiniteTypeOfIsFinitePresentation
LocalGeneratorsData πŸ“–CompDataβ€”
localGeneratorsDataOfIsFiniteType πŸ“–CompOpβ€”

SheafOfModules.GeneratingSections

Definitions

NameCategoryTheorems
I πŸ“–CompOp
14 mathmath: ofEpi_I, epi, IsFiniteType.finite, SheafOfModules.Presentation.map_relations_I, SheafOfModules.Presentation.mapRelations_mapGenerators, SheafOfModules.relationsOfIsCokernelFree_I, SheafOfModules.Presentation.of_isIso_relations, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, ofEpi_Ο€, SheafOfModules.relationsOfIsCokernelFree_s, SheafOfModules.Presentation.map_generators_I, SheafOfModules.Presentation.IsFinite.finite_relations, SheafOfModules.Presentation.map_Ο€_eq, SheafOfModules.generatorsOfIsCokernelFree_I
IsFiniteType πŸ“–CompData
2 mathmath: SheafOfModules.Presentation.IsFinite.isFiniteType_generators, SheafOfModules.LocalGeneratorsData.IsFiniteType.isFiniteType
equivOfIso πŸ“–CompOpβ€”
ofEpi πŸ“–CompOp
7 mathmath: ofEpi_I, opEpi_comp, SheafOfModules.Presentation.of_isIso_relations, SheafOfModules.Presentation.of_isIso_generators, ofEpi_Ο€, ofEpi_s, opEpi_id
s πŸ“–CompOp
5 mathmath: epi, SheafOfModules.Presentation.map_relations_I, SheafOfModules.relationsOfIsCokernelFree_s, ofEpi_s, SheafOfModules.generatorsOfIsCokernelFree_s
Ο€ πŸ“–CompOp
10 mathmath: SheafOfModules.Presentation.map_relations_I, SheafOfModules.Presentation.mapRelations_mapGenerators, SheafOfModules.relationsOfIsCokernelFree_I, SheafOfModules.Presentation.of_isIso_relations, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, ofEpi_Ο€, SheafOfModules.relationsOfIsCokernelFree_s, SheafOfModules.generatorsOfIsCokernelFree_Ο€, SheafOfModules.Presentation.IsFinite.finite_relations, SheafOfModules.Presentation.map_Ο€_eq

Theorems

NameKindAssumesProvesValidatesDepends On
epi πŸ“–mathematicalβ€”CategoryTheory.Epi
SheafOfModules
SheafOfModules.instCategory
SheafOfModules.free
I
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
SheafOfModules.freeHomEquiv
s
β€”β€”
ofEpi_I πŸ“–mathematicalβ€”I
ofEpi
β€”β€”
ofEpi_s πŸ“–mathematicalβ€”s
ofEpi
SheafOfModules.sectionsMap
β€”β€”
ofEpi_Ο€ πŸ“–mathematicalβ€”Ο€
ofEpi
CategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
SheafOfModules.instCategory
SheafOfModules.free
I
β€”SheafOfModules.freeHomEquiv_symm_comp
opEpi_comp πŸ“–mathematicalβ€”ofEpi
CategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
SheafOfModules.instCategory
CategoryTheory.epi_comp
β€”CategoryTheory.epi_comp
opEpi_id πŸ“–mathematicalβ€”ofEpi
CategoryTheory.CategoryStruct.id
SheafOfModules
CategoryTheory.Category.toCategoryStruct
SheafOfModules.instCategory
CategoryTheory.instEpiId
β€”CategoryTheory.instEpiId

SheafOfModules.GeneratingSections.IsFiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
finite πŸ“–mathematicalβ€”Finite
SheafOfModules.GeneratingSections.I
β€”β€”

SheafOfModules.IsFiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
exists_localGeneratorsData πŸ“–mathematicalCategoryTheory.HasWeakSheafify
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.GrothendieckTopology.over
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.GrothendieckTopology.HasSheafCompose
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
RingCat.hasForgetToAddCommGrp
SheafOfModules.LocalGeneratorsData.IsFiniteTypeβ€”β€”

SheafOfModules.LocalGeneratorsData

Definitions

NameCategoryTheorems
I πŸ“–CompOp
2 mathmath: coversTop, SheafOfModules.QuasicoherentData.localGeneratorsData_I
IsFiniteType πŸ“–CompData
2 mathmath: SheafOfModules.IsFiniteType.exists_localGeneratorsData, SheafOfModules.QuasicoherentData.instIsFiniteTypeLocalGeneratorsDataOfIsFinitePresentation
X πŸ“–CompOp
3 mathmath: SheafOfModules.QuasicoherentData.localGeneratorsData_X, coversTop, IsFiniteType.isFiniteType
generators πŸ“–CompOp
2 mathmath: SheafOfModules.QuasicoherentData.localGeneratorsData_generators, IsFiniteType.isFiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
coversTop πŸ“–mathematicalCategoryTheory.HasWeakSheafify
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.GrothendieckTopology.over
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.GrothendieckTopology.HasSheafCompose
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.GrothendieckTopology.CoversTop
I
X
β€”β€”

SheafOfModules.LocalGeneratorsData.IsFiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
isFiniteType πŸ“–mathematicalCategoryTheory.HasWeakSheafify
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.GrothendieckTopology.over
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.GrothendieckTopology.HasSheafCompose
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
RingCat.hasForgetToAddCommGrp
SheafOfModules.GeneratingSections.IsFiniteType
SheafOfModules.LocalGeneratorsData.X
CategoryTheory.Sheaf.over
SheafOfModules.over
SheafOfModules.LocalGeneratorsData.generators
β€”β€”

---

← Back to Index