Documentation Verification Report

PullbackContinuous

πŸ“ Source: Mathlib/Algebra/Category/ModuleCat/Sheaf/PullbackContinuous.lean

Statistics

MetricCount
Definitionsadjunction, pullback, pullbackComp, pullbackId, pullbackIso, pullbackPushforwardAdjunction, sheafificationCompPullback
7
TheoremsconjugateEquiv_pullbackComp_inv, conjugateEquiv_pullbackId_hom, instIsLeftAdjointPullback, instIsRightAdjointPushforward, instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous, instIsRightAdjointPushforwardIdSheafRingCat, pullback_assoc, pullback_comp_id, pullback_id_comp
9
Total16

SheafOfModules

Definitions

NameCategoryTheorems
pullback πŸ“–CompOp
13 mathmath: pullbackPushforwardAdjunction_homEquiv_pullbackObjUnitToUnit, instIsLeftAdjointPullback, pullback_map_ΞΉFree_comp_pullbackObjFreeIso_hom_assoc, pullbackObjFreeIso_hom_naturality_assoc, pullback_comp_id, conjugateEquiv_pullbackComp_inv, pullback_id_comp, pullback_assoc, instIsIsoPullbackObjUnitToUnitOfFinal, pullbackPushforwardAdjunction_homEquiv_symm_unitToPushforwardObjUnit, pullbackObjFreeIso_hom_naturality, conjugateEquiv_pullbackId_hom, pullback_map_ΞΉFree_comp_pullbackObjFreeIso_hom
pullbackComp πŸ“–CompOp
4 mathmath: pullback_comp_id, conjugateEquiv_pullbackComp_inv, pullback_id_comp, pullback_assoc
pullbackId πŸ“–CompOp
3 mathmath: pullback_comp_id, pullback_id_comp, conjugateEquiv_pullbackId_hom
pullbackIso πŸ“–CompOpβ€”
pullbackPushforwardAdjunction πŸ“–CompOp
4 mathmath: pullbackPushforwardAdjunction_homEquiv_pullbackObjUnitToUnit, conjugateEquiv_pullbackComp_inv, pullbackPushforwardAdjunction_homEquiv_symm_unitToPushforwardObjUnit, conjugateEquiv_pullbackId_hom
sheafificationCompPullback πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
conjugateEquiv_pullbackComp_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
SheafOfModules
instCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
pullback
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.sheafPushforwardContinuous
CategoryTheory.Functor.map
instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous
pushforward
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.conjugateEquiv
CategoryTheory.Adjunction.comp
pullbackPushforwardAdjunction
CategoryTheory.Iso.inv
pullbackComp
CategoryTheory.Iso.hom
pushforwardComp
β€”CategoryTheory.Adjunction.conjugateEquiv_leftAdjointCompIso_inv
instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous
conjugateEquiv_pullbackId_hom πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
SheafOfModules
instCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
pullback
CategoryTheory.Functor.id
CategoryTheory.Functor.isContinuous_id
CategoryTheory.CategoryStruct.id
CategoryTheory.Sheaf
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
instIsRightAdjointPushforwardIdSheafRingCat
pushforward
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.conjugateEquiv
CategoryTheory.Adjunction.id
pullbackPushforwardAdjunction
CategoryTheory.Iso.hom
pullbackId
CategoryTheory.Iso.inv
pushforwardId
β€”CategoryTheory.Adjunction.conjugateEquiv_leftAdjointIdIso_hom
CategoryTheory.Functor.isContinuous_id
instIsRightAdjointPushforwardIdSheafRingCat
instIsLeftAdjointPullback πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftAdjoint
SheafOfModules
instCategory
pullback
β€”CategoryTheory.Adjunction.isLeftAdjoint
instIsRightAdjointPushforward πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
SheafOfModules
instCategory
pushforward
β€”CategoryTheory.Adjunction.isRightAdjoint
CategoryTheory.Presheaf.instIsLocallyInjectiveOfIsIsoFunctorOpposite
CategoryTheory.IsIso.id
CategoryTheory.Presheaf.isLocallySurjective_of_iso
instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
SheafOfModules
instCategory
pushforward
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
RingCat
RingCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.sheafPushforwardContinuous
CategoryTheory.Functor.map
β€”CategoryTheory.Functor.isRightAdjoint_of_iso
CategoryTheory.Functor.isRightAdjoint_comp
instIsRightAdjointPushforwardIdSheafRingCat πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
SheafOfModules
instCategory
pushforward
CategoryTheory.Functor.id
CategoryTheory.Functor.isContinuous_id
CategoryTheory.CategoryStruct.id
CategoryTheory.Sheaf
RingCat
RingCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
β€”CategoryTheory.Functor.isRightAdjoint_of_iso
CategoryTheory.Functor.isContinuous_id
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Functor.isEquivalence_refl
pullback_assoc πŸ“–mathematicalβ€”CategoryTheory.Iso.trans
CategoryTheory.Functor
SheafOfModules
instCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
RingCat
RingCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.sheafPushforwardContinuous
CategoryTheory.Functor.map
instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous
CategoryTheory.Functor.isoWhiskerLeft
pullbackComp
CategoryTheory.Iso.symm
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerRight
β€”CategoryTheory.Adjunction.leftAdjointCompIso_assoc
instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous
pushforward_assoc
pullback_comp_id πŸ“–mathematicalβ€”pullbackComp
CategoryTheory.Functor.id
CategoryTheory.Functor.isContinuous_id
CategoryTheory.Functor.instIsContinuousCompId
CategoryTheory.CategoryStruct.id
CategoryTheory.Sheaf
RingCat
RingCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
instIsRightAdjointPushforwardIdSheafRingCat
CategoryTheory.Iso.trans
CategoryTheory.Functor
SheafOfModules
instCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
pullback
CategoryTheory.Functor.isoWhiskerLeft
pullbackId
CategoryTheory.Functor.rightUnitor
β€”CategoryTheory.Adjunction.leftAdjointCompIso_comp_id
CategoryTheory.Functor.isContinuous_id
instIsRightAdjointPushforwardIdSheafRingCat
CategoryTheory.Functor.instIsContinuousCompId
pushforward_id_comp
pullback_id_comp πŸ“–mathematicalβ€”pullbackComp
CategoryTheory.Functor.id
CategoryTheory.Functor.isContinuous_id
CategoryTheory.CategoryStruct.id
CategoryTheory.Sheaf
RingCat
RingCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
instIsRightAdjointPushforwardIdSheafRingCat
CategoryTheory.Functor.instIsContinuousCompId_1
CategoryTheory.Iso.trans
CategoryTheory.Functor
SheafOfModules
instCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
pullback
CategoryTheory.Functor.isoWhiskerRight
pullbackId
CategoryTheory.Functor.leftUnitor
β€”CategoryTheory.Adjunction.leftAdjointCompIso_id_comp
CategoryTheory.Functor.isContinuous_id
instIsRightAdjointPushforwardIdSheafRingCat
CategoryTheory.Functor.instIsContinuousCompId_1
pushforward_comp_id

SheafOfModules.PullbackConstruction

Definitions

NameCategoryTheorems
adjunction πŸ“–CompOpβ€”

---

← Back to Index