Documentation Verification Report

Quasicoherent

πŸ“ Source: Mathlib/Algebra/Category/ModuleCat/Sheaf/Quasicoherent.lean

Statistics

MetricCount
DefinitionsIsFinitePresentation, IsQuasicoherent, generators, isColimit, map, mapGenerators, mapRelations, of_isIso, quasicoherentData, relations, QuasicoherentData, I, IsFinitePresentation, X, bind, localGeneratorsData, presentation, shrink, generatorsOfIsCokernelFree, isFinitePresentation, isQuasicoherent, presentationOfIsCokernelFree, quasicoherentDataOfIsFinitePresentation, relationsOfIsCokernelFree
24
Theoremsexists_quasicoherentData, nonempty_quasicoherentData, of_coversTop, finite_relations, isFiniteType_generators, isQuasicoherent, mapRelations_mapGenerators, mapRelations_mapGenerators_assoc, map_generators_I, map_relations_I, map_Ο€_eq, of_isIso_generators, of_isIso_relations, quasicoherentData_I, quasicoherentData_X, quasicoherentData_presentation, isFinite_presentation, coversTop, instIsFiniteTypeLocalGeneratorsDataOfIsFinitePresentation, isQuasicoherent, localGeneratorsData_I, localGeneratorsData_X, localGeneratorsData_generators, generatorsOfIsCokernelFree_I, generatorsOfIsCokernelFree_s, generatorsOfIsCokernelFree_Ο€, instIsFiniteTypeOfIsFinitePresentation, instIsQuasicoherentOfIsFinitePresentation, instPreservesColimitsOfSize, presentationOfIsCokernelFree_generators, presentationOfIsCokernelFree_relations, relationsOfIsCokernelFree_I, relationsOfIsCokernelFree_s
33
Total57

SheafOfModules

Definitions

NameCategoryTheorems
IsFinitePresentation πŸ“–CompDataβ€”
IsQuasicoherent πŸ“–CompData
4 mathmath: Presentation.isQuasicoherent, QuasicoherentData.isQuasicoherent, instIsQuasicoherentOfIsFinitePresentation, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde
QuasicoherentData πŸ“–CompData
1 mathmath: IsQuasicoherent.nonempty_quasicoherentData
generatorsOfIsCokernelFree πŸ“–CompOp
7 mathmath: presentationOfIsCokernelFree_generators, Presentation.map_relations_I, relationsOfIsCokernelFree_I, relationsOfIsCokernelFree_s, generatorsOfIsCokernelFree_Ο€, generatorsOfIsCokernelFree_s, generatorsOfIsCokernelFree_I
isFinitePresentation πŸ“–CompOpβ€”
isQuasicoherent πŸ“–CompOpβ€”
presentationOfIsCokernelFree πŸ“–CompOp
2 mathmath: presentationOfIsCokernelFree_generators, presentationOfIsCokernelFree_relations
quasicoherentDataOfIsFinitePresentation πŸ“–CompOpβ€”
relationsOfIsCokernelFree πŸ“–CompOp
3 mathmath: presentationOfIsCokernelFree_relations, relationsOfIsCokernelFree_I, relationsOfIsCokernelFree_s

Theorems

NameKindAssumesProvesValidatesDepends On
generatorsOfIsCokernelFree_I πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
GeneratingSections.I
generatorsOfIsCokernelFree
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
generatorsOfIsCokernelFree_s πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
GeneratingSections.s
generatorsOfIsCokernelFree
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
freeHomEquiv
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
generatorsOfIsCokernelFree_Ο€ πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
GeneratingSections.Ο€
generatorsOfIsCokernelFree
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
Equiv.symm_apply_apply
instIsFiniteTypeOfIsFinitePresentation πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
IsFiniteTypeβ€”IsFinitePresentation.exists_quasicoherentData
QuasicoherentData.instIsFiniteTypeLocalGeneratorsDataOfIsFinitePresentation
instIsQuasicoherentOfIsFinitePresentation πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
IsQuasicoherentβ€”IsFinitePresentation.exists_quasicoherentData
instPreservesColimitsOfSize πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfSize
SheafOfModules
instCategory
β€”CategoryTheory.Limits.preservesColimitsOfSize_shrink
presentationOfIsCokernelFree_generators πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
Presentation.generators
presentationOfIsCokernelFree
generatorsOfIsCokernelFree
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
presentationOfIsCokernelFree_relations πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
Presentation.relations
presentationOfIsCokernelFree
relationsOfIsCokernelFree
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
AddCommGrpCat.hasLimitsOfShape
relationsOfIsCokernelFree_I πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
GeneratingSections.I
CategoryTheory.Limits.kernel
generatorsOfIsCokernelFree
GeneratingSections.Ο€
hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.ring
ModuleCat.moduleCategory
evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
AddCommGrpCat.hasLimitsOfShape
relationsOfIsCokernelFree
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
AddCommGrpCat.hasLimitsOfShape
relationsOfIsCokernelFree_s πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
instCategory
free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
GeneratingSections.s
CategoryTheory.Limits.kernel
GeneratingSections.I
generatorsOfIsCokernelFree
GeneratingSections.Ο€
hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.ring
ModuleCat.moduleCategory
evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
AddCommGrpCat.hasLimitsOfShape
relationsOfIsCokernelFree
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
freeHomEquiv
CategoryTheory.Limits.kernel.lift
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
AddCommGrpCat.hasLimitsOfShape

SheafOfModules.IsFinitePresentation

Theorems

NameKindAssumesProvesValidatesDepends On
exists_quasicoherentData πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.QuasicoherentData.IsFinitePresentationβ€”β€”

SheafOfModules.IsQuasicoherent

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_quasicoherentData πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.QuasicoherentDataβ€”β€”
of_coversTop πŸ“–β€”CategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
CategoryTheory.GrothendieckTopology.CoversTop
SheafOfModules.IsQuasicoherent
CategoryTheory.Sheaf.over
CategoryTheory.instHasWeakSheafifyOfHasSheafify
SheafOfModules.over
β€”β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
SheafOfModules.QuasicoherentData.isQuasicoherent
nonempty_quasicoherentData

SheafOfModules.Presentation

Definitions

NameCategoryTheorems
generators πŸ“–CompOp
11 mathmath: SheafOfModules.presentationOfIsCokernelFree_generators, SheafOfModules.QuasicoherentData.localGeneratorsData_generators, IsFinite.isFiniteType_generators, map_relations_I, mapRelations_mapGenerators, of_isIso_relations, of_isIso_generators, mapRelations_mapGenerators_assoc, map_generators_I, IsFinite.finite_relations, map_Ο€_eq
isColimit πŸ“–CompOp
1 mathmath: map_relations_I
map πŸ“–CompOp
4 mathmath: quasicoherentData_presentation, map_relations_I, map_generators_I, map_Ο€_eq
mapGenerators πŸ“–CompOp
3 mathmath: map_relations_I, mapRelations_mapGenerators, mapRelations_mapGenerators_assoc
mapRelations πŸ“–CompOp
3 mathmath: map_relations_I, mapRelations_mapGenerators, mapRelations_mapGenerators_assoc
of_isIso πŸ“–CompOp
2 mathmath: of_isIso_relations, of_isIso_generators
quasicoherentData πŸ“–CompOp
3 mathmath: quasicoherentData_presentation, quasicoherentData_I, quasicoherentData_X
relations πŸ“–CompOp
6 mathmath: SheafOfModules.presentationOfIsCokernelFree_relations, map_relations_I, mapRelations_mapGenerators, of_isIso_relations, mapRelations_mapGenerators_assoc, IsFinite.finite_relations

Theorems

NameKindAssumesProvesValidatesDepends On
isQuasicoherent πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.IsQuasicoherent
CategoryTheory.instHasWeakSheafifyOfHasSheafify
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
mapRelations_mapGenerators πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
SheafOfModules.instCategory
SheafOfModules.free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
SheafOfModules.GeneratingSections.I
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
SheafOfModules.instPreadditive
generators
SheafOfModules.GeneratingSections.Ο€
SheafOfModules.hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.ring
ModuleCat.moduleCategory
SheafOfModules.evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
AddCommGrpCat.hasLimitsOfShape
relations
mapRelations
mapGenerators
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
SheafOfModules.hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
AddCommGrpCat.hasLimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Limits.kernel.condition
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_preserves_initial_object
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.PreservesColimitsOfSize0.preservesFiniteColimits
SheafOfModules.instPreservesColimitsOfSize
CategoryTheory.Limits.comp_zero
mapRelations_mapGenerators_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SheafOfModules
CategoryTheory.Category.toCategoryStruct
SheafOfModules.instCategory
SheafOfModules.free
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
SheafOfModules.GeneratingSections.I
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
SheafOfModules.instPreadditive
generators
SheafOfModules.GeneratingSections.Ο€
SheafOfModules.hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.ring
ModuleCat.moduleCategory
SheafOfModules.evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
AddCommGrpCat.hasLimitsOfShape
relations
mapRelations
mapGenerators
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
SheafOfModules.hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
AddCommGrpCat.hasLimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapRelations_mapGenerators
map_generators_I πŸ“–mathematicalβ€”SheafOfModules.GeneratingSections.I
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Functor.obj
SheafOfModules
SheafOfModules.instCategory
generators
map
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
map_relations_I πŸ“–mathematicalβ€”SheafOfModules.GeneratingSections.I
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Limits.kernel
SheafOfModules
SheafOfModules.instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
SheafOfModules.instPreadditive
SheafOfModules.free
CategoryTheory.Functor.obj
SheafOfModules.generatorsOfIsCokernelFree
generators
SheafOfModules.GeneratingSections.Ο€
relations
mapRelations
mapGenerators
mapRelations_mapGenerators
DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.parallelPair
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
SheafOfModules.freeHomEquiv
SheafOfModules.GeneratingSections.s
CategoryTheory.Limits.kernel.ΞΉ
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Functor.mapCocone
CategoryTheory.Limits.CokernelCofork.ofΟ€
CategoryTheory.Limits.IsColimit.equivOfNatIsoOfIso
CategoryTheory.Limits.parallelPairIsoMk
SheafOfModules.mapFree
CategoryTheory.Limits.Cocones.ext
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.Cocones.precompose
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.refl
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.isColimitOfPreserves
isColimit
SheafOfModules.hasLimit
small_subtype
small_Pi
CategoryTheory.types
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.ring
ModuleCat.moduleCategory
SheafOfModules.evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
AddCommGrpCat.hasLimitsOfShape
map
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
mapRelations_mapGenerators
SheafOfModules.hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
AddCommGrpCat.hasLimitsOfShape
map_Ο€_eq πŸ“–mathematicalβ€”SheafOfModules.GeneratingSections.Ο€
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Functor.obj
SheafOfModules
SheafOfModules.instCategory
generators
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SheafOfModules.free
SheafOfModules.GeneratingSections.I
CategoryTheory.Iso.inv
SheafOfModules.mapFree
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.map
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
Equiv.symm_apply_eq
of_isIso_generators πŸ“–mathematicalβ€”generators
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
of_isIso
SheafOfModules.GeneratingSections.ofEpi
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
of_isIso_relations πŸ“–mathematicalβ€”relations
CategoryTheory.instHasWeakSheafifyOfHasSheafify
AddCommGrpCat
AddCommGrpCat.instCategory
of_isIso
SheafOfModules.GeneratingSections.ofEpi
CategoryTheory.Limits.kernel
SheafOfModules
SheafOfModules.instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
SheafOfModules.instPreadditive
SheafOfModules.free
SheafOfModules.GeneratingSections.I
generators
SheafOfModules.GeneratingSections.Ο€
CategoryTheory.Iso.hom
CategoryTheory.Iso.trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.symm
CategoryTheory.Limits.kernelCompMono
CategoryTheory.eqToIso
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
quasicoherentData_I πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.QuasicoherentData.I
CategoryTheory.instHasWeakSheafifyOfHasSheafify
quasicoherentData
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
quasicoherentData_X πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.QuasicoherentData.X
CategoryTheory.instHasWeakSheafifyOfHasSheafify
quasicoherentData
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
quasicoherentData_presentation πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.QuasicoherentData.presentation
CategoryTheory.instHasWeakSheafifyOfHasSheafify
quasicoherentData
map
CategoryTheory.Sheaf.over
SheafOfModules.pushforward
CategoryTheory.Over.forget
CategoryTheory.GrothendieckTopology.instIsContinuousOverForgetOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Sheaf
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Iso.refl
SheafOfModules
SheafOfModules.instCategory
CategoryTheory.Functor.obj
SheafOfModules.unit
β€”CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.GrothendieckTopology.instIsContinuousOverForgetOver

SheafOfModules.Presentation.IsFinite

Theorems

NameKindAssumesProvesValidatesDepends On
finite_relations πŸ“–mathematicalβ€”Finite
SheafOfModules.GeneratingSections.I
CategoryTheory.Limits.kernel
SheafOfModules
SheafOfModules.instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
SheafOfModules.instPreadditive
SheafOfModules.free
SheafOfModules.Presentation.generators
SheafOfModules.GeneratingSections.Ο€
SheafOfModules.hasLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
ModuleCat
RingCat.carrier
Opposite
CategoryTheory.Category.opposite
RingCat
RingCat.instCategory
CategoryTheory.Sheaf.val
RingCat.ring
ModuleCat.moduleCategory
SheafOfModules.evaluation
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
AddCommGrpCat.hasLimitsOfShape
SheafOfModules.Presentation.relations
β€”β€”
isFiniteType_generators πŸ“–mathematicalβ€”SheafOfModules.GeneratingSections.IsFiniteType
SheafOfModules.Presentation.generators
β€”β€”

SheafOfModules.QuasicoherentData

Definitions

NameCategoryTheorems
I πŸ“–CompOp
3 mathmath: coversTop, localGeneratorsData_I, SheafOfModules.Presentation.quasicoherentData_I
IsFinitePresentation πŸ“–CompData
1 mathmath: SheafOfModules.IsFinitePresentation.exists_quasicoherentData
X πŸ“–CompOp
5 mathmath: localGeneratorsData_generators, coversTop, IsFinitePresentation.isFinite_presentation, localGeneratorsData_X, SheafOfModules.Presentation.quasicoherentData_X
bind πŸ“–CompOpβ€”
localGeneratorsData πŸ“–CompOp
4 mathmath: localGeneratorsData_generators, instIsFiniteTypeLocalGeneratorsDataOfIsFinitePresentation, localGeneratorsData_X, localGeneratorsData_I
presentation πŸ“–CompOp
3 mathmath: localGeneratorsData_generators, IsFinitePresentation.isFinite_presentation, SheafOfModules.Presentation.quasicoherentData_presentation
shrink πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coversTop πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
CategoryTheory.GrothendieckTopology.CoversTop
I
X
β€”β€”
instIsFiniteTypeLocalGeneratorsDataOfIsFinitePresentation πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.LocalGeneratorsData.IsFiniteType
localGeneratorsData
β€”SheafOfModules.Presentation.IsFinite.isFiniteType_generators
IsFinitePresentation.isFinite_presentation
isQuasicoherent πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.IsQuasicoherentβ€”β€”
localGeneratorsData_I πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.LocalGeneratorsData.I
localGeneratorsData
I
β€”β€”
localGeneratorsData_X πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.LocalGeneratorsData.X
localGeneratorsData
X
β€”β€”
localGeneratorsData_generators πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.LocalGeneratorsData.generators
localGeneratorsData
SheafOfModules.Presentation.generators
X
CategoryTheory.Sheaf.over
SheafOfModules.over
presentation
β€”β€”

SheafOfModules.QuasicoherentData.IsFinitePresentation

Theorems

NameKindAssumesProvesValidatesDepends On
isFinite_presentation πŸ“–mathematicalCategoryTheory.GrothendieckTopology.HasSheafCompose
CategoryTheory.Over
CategoryTheory.instCategoryOver
RingCat
RingCat.instCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.GrothendieckTopology.over
CategoryTheory.forgetβ‚‚
RingHom
RingCat.carrier
Semiring.toNonAssocSemiring
Ring.toSemiring
RingCat.ring
RingHom.instFunLike
RingCat.instConcreteCategoryRingHomCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
RingCat.hasForgetToAddCommGrp
CategoryTheory.HasWeakSheafify
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
SheafOfModules.Presentation.IsFinite
SheafOfModules.QuasicoherentData.X
CategoryTheory.Sheaf.over
SheafOfModules.over
SheafOfModules.QuasicoherentData.presentation
β€”β€”

---

← Back to Index