| Name | Category | Theorems |
coinduced đ | CompOp | â |
free đ | CompOp | 3 mathmath: free_map, instIsLeftAdjointTopCatFree, free_obj
|
freeAdj đ | CompOp | â |
freeMap đ | CompOp | 2 mathmath: free_map, freeMap_map
|
freeObj đ | CompOp | 3 mathmath: coe_freeObj, freeMap_map, free_obj
|
fromInduced đ | CompOp | â |
indiscrete đ | CompOp | 1 mathmath: instIsRightAdjointModuleCatIndiscrete
|
indiscreteAdj đ | CompOp | â |
induced đ | CompOp | â |
instAddCommGroupHom đ | CompOp | 6 mathmath: hom_add, hom_zsmul, hom_sub, hom_nsmul, hom_smul, hom_neg
|
instCategory đ | CompOp | 52 mathmath: hom_zero, ContinuousCohomology.I_obj_V_isAddCommGroup, instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, ContinuousCohomology.I_obj_V_carrier, hom_zero_apply, free_map, hasLimit_of_hasLimit_forgetâ, instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, ContinuousCohomology.I_obj_Ď_apply, ContinuousCohomology.instLinearActionTopModuleCatInvariants, ContinuousCohomology.Iobj_Ď_apply, ContinuousCohomology.I_obj_V_isModule, hom_add, instHasColimits, instIsRightAdjointModuleCatIndiscrete, instIsLeftAdjointModuleCatWithModuleTopology, hom_zsmul, ContinuousCohomology.instAdditiveActionTopModuleCatInvariants, ContinuousCohomology.MultiInd.d_comp_d_assoc, instIsLeftAdjointTopCatFree, hom_id, comp_cokerĎ, ContinuousCohomology.I_map_hom, freeMap_map, instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, instCategoryWithHomology, hom_sub, forgetâ_TopCat_obj, hom_nsmul, instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, hom_smul, free_obj, ContinuousCohomology.instLinearActionTopModuleCatI, instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, kerΚ_apply, ContinuousCohomology.I_obj_V_topologicalSpace, instEpiCokerĎ, instHasColimitsOfShapeOfModuleCat, ContinuousCohomology.MultiInd.d_comp_d, instHasLimitsOfShapeOfModuleCat, instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, instHasColimitOfModuleCatCompForgetâContinuousLinearMapIdCarrierLinearMap, instMonoKerΚ, hom_comp, instHasLimits, ContinuousCohomology.MultiInd.d_succ, kerΚ_comp, hom_neg, ContinuousCohomology.const_app_hom, hom_forgetâ_TopCat_map, ContinuousCohomology.instAdditiveActionTopModuleCatI
|
instCoeSortType đ | CompOp | â |
instConcreteCategoryContinuousLinearMapIdCarrier đ | CompOp | 12 mathmath: instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, hom_id, freeMap_map, instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, forgetâ_TopCat_obj, instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, kerΚ_apply, instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, hom_forgetâ_TopCat_map
|
instHasForgetâContinuousLinearMapIdCarrierModuleCatLinearMap đ | CompOp | 2 mathmath: instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap
|
instHasForgetâContinuousLinearMapIdCarrierTopCatContinuousMapCarrier đ | CompOp | 7 mathmath: instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, forgetâ_TopCat_obj, instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, hom_forgetâ_TopCat_map
|
instLinear đ | CompOp | 2 mathmath: ContinuousCohomology.instLinearActionTopModuleCatInvariants, ContinuousCohomology.instLinearActionTopModuleCatI
|
instModuleHom đ | CompOp | 1 mathmath: hom_smul
|
instPreadditive đ | CompOp | 12 mathmath: hom_zero, hom_zero_apply, ContinuousCohomology.instLinearActionTopModuleCatInvariants, ContinuousCohomology.instAdditiveActionTopModuleCatInvariants, ContinuousCohomology.MultiInd.d_comp_d_assoc, comp_cokerĎ, instCategoryWithHomology, ContinuousCohomology.instLinearActionTopModuleCatI, ContinuousCohomology.MultiInd.d_comp_d, ContinuousCohomology.MultiInd.d_succ, kerΚ_comp, ContinuousCohomology.instAdditiveActionTopModuleCatI
|
instTopologicalSpaceCarrier đ | CompOp | 9 mathmath: ContinuousCohomology.I_obj_V_isAddCommGroup, ContinuousCohomology.I_obj_V_carrier, ContinuousCohomology.I_obj_Ď_apply, ContinuousCohomology.Iobj_Ď_apply, ContinuousCohomology.I_obj_V_isModule, ContinuousCohomology.I_map_hom, instIsTopologicalAddGroupCarrier, ContinuousCohomology.I_obj_V_topologicalSpace, ContinuousCohomology.const_app_hom
|
isColimit đ | CompOp | â |
isLimit đ | CompOp | â |
of đ | CompOp | 3 mathmath: ContinuousCohomology.I_obj_Ď_apply, coe_of, hom_ofHom
|
ofCocone đ | CompOp | â |
ofCone đ | CompOp | â |
ofHom đ | CompOp | 5 mathmath: ContinuousCohomology.I_obj_Ď_apply, ofHom_hom, ContinuousCohomology.I_map_hom, hom_ofHom, ContinuousCohomology.const_app_hom
|
ofIso đ | CompOp | â |
toCoinduced đ | CompOp | â |
toModuleCat đ | CompOp | 37 mathmath: hom_cokerĎ, hom_zero, ContinuousCohomology.I_obj_V_isAddCommGroup, instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, ContinuousCohomology.I_obj_V_carrier, hom_zero_apply, instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, coe_freeObj, continuousSMul, ContinuousCohomology.I_obj_Ď_apply, coe_of, ofHom_hom, ContinuousCohomology.Iobj_Ď_apply, ContinuousCohomology.I_obj_V_isModule, hom_add, hom_zsmul, hom_id, ContinuousCohomology.I_map_hom, freeMap_map, instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, isTopologicalAddGroup, hom_sub, forgetâ_TopCat_obj, hom_nsmul, instIsTopologicalAddGroupCarrier, instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, cokerĎ_surjective, hom_smul, instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, kerΚ_apply, ContinuousCohomology.I_obj_V_topologicalSpace, instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, hom_comp, hom_neg, ContinuousCohomology.const_app_hom, hom_forgetâ_TopCat_map
|
topologicalSpace đ | CompOp | 30 mathmath: hom_cokerĎ, hom_zero, instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, hom_zero_apply, instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, continuousSMul, ContinuousCohomology.I_obj_Ď_apply, ofHom_hom, ContinuousCohomology.Iobj_Ď_apply, hom_add, hom_zsmul, hom_id, freeMap_map, instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, isTopologicalAddGroup, hom_sub, forgetâ_TopCat_obj, hom_nsmul, instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, cokerĎ_surjective, hom_smul, instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, kerΚ_apply, ContinuousCohomology.I_obj_V_topologicalSpace, instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, hom_comp, hom_neg, ContinuousCohomology.const_app_hom, hom_forgetâ_TopCat_map
|
withModuleTopology đ | CompOp | 1 mathmath: instIsLeftAdjointModuleCatWithModuleTopology
|
withModuleTopologyAdj đ | CompOp | â |