Documentation Verification Report

Adjunctions

📁 Source: Mathlib/Algebra/Category/Ring/Adjunctions.lean

Statistics

MetricCount
Definitionsadj, coyoneda, coyonedaAdj, coyonedaUnique, forget₂Adj, free, monoidAlgebra, monoidAlgebraAdj
8
TheoremscoyonedaUnique_hom_app_hom_apply, coyonedaUnique_inv_app_hom_apply, coyoneda_map_app, coyoneda_obj_map, coyoneda_obj_obj_carrier, free_map_coe, free_obj_coe, instIsLeftAdjointCommMonCatUnderMonoidAlgebra, instIsRightAdjointCommMonCatForget₂RingHomCarrierMonoidHomCarrier, instIsRightAdjointForgetRingHomCarrier, instIsRightAdjointOppositeObjFunctorTypeYoneda, monoidAlgebra_map, monoidAlgebra_obj
13
Total21

CommRingCat

Definitions

NameCategoryTheorems
adj 📖CompOp—
coyoneda 📖CompOp
5 mathmath: coyoneda_map_app, coyoneda_obj_obj_carrier, coyoneda_obj_map, coyonedaUnique_inv_app_hom_apply, coyonedaUnique_hom_app_hom_apply
coyonedaAdj 📖CompOp—
coyonedaUnique 📖CompOp
2 mathmath: coyonedaUnique_inv_app_hom_apply, coyonedaUnique_hom_app_hom_apply
forget₂Adj 📖CompOp—
free 📖CompOp
2 mathmath: free_obj_coe, free_map_coe
monoidAlgebra 📖CompOp
3 mathmath: monoidAlgebra_map, instIsLeftAdjointCommMonCatUnderMonoidAlgebra, monoidAlgebra_obj
monoidAlgebraAdj 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
coyonedaUnique_hom_app_hom_apply 📖mathematical—DFunLike.coe
RingHom
carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.commRing
Opposite.unop
Opposite.op
commRing
RingHom.instFunLike
Hom.hom
CategoryTheory.Functor.obj
CommRingCat
instCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
coyoneda
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
coyonedaUnique
Unique.instInhabited
——
coyonedaUnique_inv_app_hom_apply 📖mathematical—DFunLike.coe
RingHom
carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Pi.commRing
Opposite.unop
Opposite.op
RingHom.instFunLike
Hom.hom
CategoryTheory.Functor.obj
CommRingCat
instCategory
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
coyoneda
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
coyonedaUnique
——
coyoneda_map_app 📖mathematical—CategoryTheory.NatTrans.app
CommRingCat
instCategory
of
Pi.commRing
Opposite.unop
carrier
commRing
ofHom
Pi.ringHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.comp
Hom.hom
Pi.evalRingHom
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
coyoneda
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
——
coyoneda_obj_map 📖mathematical—CategoryTheory.Functor.map
CommRingCat
instCategory
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
coyoneda
ofHom
Pi.commRing
Opposite.unop
carrier
commRing
Pi.ringHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.comp
Hom.hom
Pi.evalRingHom
——
coyoneda_obj_obj_carrier 📖mathematical—carrier
CategoryTheory.Functor.obj
CommRingCat
instCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
coyoneda
——
free_map_coe 📖mathematical—DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.types
CommRingCat
instCategory
free
carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
RingHom.instFunLike
instConcreteCategoryRingHomCarrier
CategoryTheory.Functor.map
AlgHom
MvPolynomial
Int.instCommSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.rename
——
free_obj_coe 📖mathematical—carrier
CategoryTheory.Functor.obj
CategoryTheory.types
CommRingCat
instCategory
free
MvPolynomial
Int.instCommSemiring
——
instIsLeftAdjointCommMonCatUnderMonoidAlgebra 📖mathematical—CategoryTheory.Functor.IsLeftAdjoint
CommMonCat
CommMonCat.instCategory
CategoryTheory.Under
CommRingCat
instCategory
CategoryTheory.instCategoryUnder
monoidAlgebra
——
instIsRightAdjointCommMonCatForget₂RingHomCarrierMonoidHomCarrier 📖mathematical—CategoryTheory.Functor.IsRightAdjoint
CommMonCat
CommMonCat.instCategory
CommRingCat
instCategory
CategoryTheory.forget₂
RingHom
carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
RingHom.instFunLike
instConcreteCategoryRingHomCarrier
MonoidHom
CommMonCat.carrier
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
CommMonCat.str
MonoidHom.instFunLike
CommMonCat.instConcreteCategoryMonoidHomCarrier
instHasForget₂RingHomCarrierCommMonCatMonoidHomCarrier
—CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.hasSmallestColimitsOfHasColimits
Colimits.hasColimits_commRingCat
instIsRightAdjointForgetRingHomCarrier 📖mathematical—CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.types
CommRingCat
instCategory
CategoryTheory.forget
RingHom
carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
RingHom.instFunLike
instConcreteCategoryRingHomCarrier
——
instIsRightAdjointOppositeObjFunctorTypeYoneda 📖mathematical—CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.types
Opposite
CommRingCat
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
——
monoidAlgebra_map 📖mathematical—CategoryTheory.Functor.map
CommMonCat
CommMonCat.instCategory
CategoryTheory.Under
CommRingCat
instCategory
CategoryTheory.instCategoryUnder
monoidAlgebra
CategoryTheory.Under.homMk
of
MonoidAlgebra
carrier
CommMonCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
MonoidAlgebra.commRing
CommMonCat.str
ofHom
MonoidAlgebra.singleOneRingHom
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidAlgebra.mapDomainRingHom
CommMonCat.Hom.hom
——
monoidAlgebra_obj 📖mathematical—CategoryTheory.Functor.obj
CommMonCat
CommMonCat.instCategory
CategoryTheory.Under
CommRingCat
instCategory
CategoryTheory.instCategoryUnder
monoidAlgebra
of
MonoidAlgebra
carrier
CommMonCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
MonoidAlgebra.commRing
CommMonCat.str
ofHom
MonoidAlgebra.singleOneRingHom
Monoid.toMulOneClass
CommMonoid.toMonoid
——

---

← Back to Index