📁 Source: Mathlib/Algebra/Category/Ring/Epi.lean
epi_iff_epi
epi_iff_tmul_eq_tmul
surjective_iff_epi_and_finite
surjective_of_epi_of_finite
CategoryTheory.Epi
CommRingCat
instCategory
of
ofHom
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.IsEpi
CategoryTheory.Epi.left_cancellation
hom_ext
RingHom.ext
Algebra.algebraMap_eq_smul_one
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
RingHom.congr_fun
IsScalarTower.to_smulCommClass
Commute.all
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
mul_one
one_mul
CommRingCat.carrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CommRingCat.instCategory
RingHom
Semiring.toNonAssocSemiring
CommRingCat.commRing
instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Finite
CommRingCat.Hom.hom
CategoryTheory.ConcreteCategory.epi_of_surjective
Finite.of_surjective
CommRingCat.epi_iff_epi
Algebra.isEpi_iff_surjective_algebraMap_of_finite
---
← Back to Index