Documentation Verification Report

FinitePresentation

πŸ“ Source: Mathlib/Algebra/Category/Ring/FinitePresentation.lean

Statistics

MetricCount
Definitions0
TheoremsisFinitelyPresentable_hom, isFinitelyPresentable_under, preservesColimit_coyoneda_of_finitePresentation, preservesFilteredColimits_coyoneda, exists_comp_map_eq_of_isColimit, exists_eq_comp_ΞΉ_app_of_isColimit, isFinitelyPresentable, preservesColimit_coyoneda_of_finitePresentation, preservesFilteredColimits_coyoneda
9
Total9

CommRingCat

Theorems

NameKindAssumesProvesValidatesDepends On
isFinitelyPresentable_hom πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.isFinitelyPresentable
CommRingCat
instCategory
β€”isFinitelyPresentable_under
isFinitelyPresentable_under πŸ“–mathematicalβ€”CategoryTheory.IsFinitelyPresentable
CategoryTheory.Under
CommRingCat
instCategory
CategoryTheory.instCategoryUnder
β€”CategoryTheory.isFinitelyPresentable_iff_preservesFilteredColimits
preservesFilteredColimits_coyoneda
preservesColimit_coyoneda_of_finitePresentation πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Under
CommRingCat
instCategory
CategoryTheory.instCategoryUnder
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
β€”CategoryTheory.Category.id_comp
CategoryTheory.Under.w
RingHom.EssFiniteType.exists_eq_comp_ΞΉ_app_of_isColimit
CategoryTheory.Limits.PreservesColimit.preserves
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.Limits.instPreservesFilteredColimitsOfSizeUnderForget
CategoryTheory.Under.UnderMorphism.ext
RingHom.EssFiniteType.exists_comp_map_eq_of_isColimit
RingHom.FiniteType.essFiniteType
RingHom.FiniteType.of_finitePresentation
preservesFilteredColimits_coyoneda πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFilteredColimits
CategoryTheory.Under
CommRingCat
instCategory
CategoryTheory.instCategoryUnder
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
β€”preservesColimit_coyoneda_of_finitePresentation
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
FilteredColimits.forget_preservesFilteredColimits

RingHom.EssFiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
exists_comp_map_eq_of_isColimit πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CommRingCat
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Functor.mapβ€”CategoryTheory.IsFiltered.cocone_nonempty
CommRingCat.hom_ext
ext
CommRingCat.hom_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.id_comp
CategoryTheory.Limits.Cocone.w
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
exists_eq_comp_ΞΉ_app_of_isColimit πŸ“–β€”CategoryTheory.CategoryStruct.comp
CommRingCat
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
β€”β€”RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
CommRingCat.hom_ext
AlgHom.comp_algebraMap
CategoryTheory.IsFiltered.sup_objs_exists
MvPolynomial.ringHom_ext
MvPolynomial.evalβ‚‚_C
CategoryTheory.Category.assoc
MvPolynomial.evalβ‚‚_X
CategoryTheory.Limits.Cocone.w
RingHom.ext
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
Eq.le
Ideal.subset_span
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
CategoryTheory.IsFiltered.cocone_nonempty
Ideal.span_le
RingHom.ker.congr_simp
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.id_comp
RingHom.liftOfRightInverse_comp_apply

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isFinitelyPresentable πŸ“–mathematicalβ€”CategoryTheory.IsFinitelyPresentable
CategoryTheory.Under
CommRingCat
CommRingCat.instCategory
CategoryTheory.instCategoryUnder
β€”CommRingCat.isFinitelyPresentable_under
preservesColimit_coyoneda_of_finitePresentation πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Under
CommRingCat
CommRingCat.instCategory
CategoryTheory.instCategoryUnder
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
β€”CommRingCat.preservesColimit_coyoneda_of_finitePresentation
preservesFilteredColimits_coyoneda πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFilteredColimits
CategoryTheory.Under
CommRingCat
CommRingCat.instCategory
CategoryTheory.instCategoryUnder
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
β€”CommRingCat.preservesFilteredColimits_coyoneda

---

← Back to Index