π Source: Mathlib/Algebra/Category/Ring/FinitePresentation.lean
isFinitelyPresentable_hom
isFinitelyPresentable_under
preservesColimit_coyoneda_of_finitePresentation
preservesFilteredColimits_coyoneda
exists_comp_map_eq_of_isColimit
exists_eq_comp_ΞΉ_app_of_isColimit
isFinitelyPresentable
CategoryTheory.MorphismProperty.isFinitelyPresentable
CommRingCat
instCategory
CategoryTheory.IsFinitelyPresentable
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.isFinitelyPresentable_iff_preservesFilteredColimits
CategoryTheory.Limits.PreservesColimit
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Category.id_comp
CategoryTheory.Under.w
RingHom.EssFiniteType.exists_eq_comp_ΞΉ_app_of_isColimit
CategoryTheory.Limits.PreservesColimit.preserves
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.Limits.instPreservesFilteredColimitsOfSizeUnderForget
CategoryTheory.Under.UnderMorphism.ext
RingHom.EssFiniteType.exists_comp_map_eq_of_isColimit
RingHom.FiniteType.essFiniteType
RingHom.FiniteType.of_finitePresentation
CategoryTheory.Limits.PreservesFilteredColimits
FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.NatTrans.app
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Functor.map
CategoryTheory.IsFiltered.cocone_nonempty
CommRingCat.hom_ext
ext
CommRingCat.hom_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.NatTrans.naturality
CategoryTheory.Limits.Cocone.w
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
CategoryTheory.IsFiltered.sup_objs_exists
MvPolynomial.ringHom_ext
MvPolynomial.evalβ_C
MvPolynomial.evalβ_X
RingHom.ext
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
Eq.le
Ideal.subset_span
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
Ideal.span_le
RingHom.ker.congr_simp
RingHom.liftOfRightInverse_comp_apply
CommRingCat.isFinitelyPresentable_under
CommRingCat.preservesColimit_coyoneda_of_finitePresentation
CommRingCat.preservesFilteredColimits_coyoneda
---
β Back to Index