Documentation Verification Report

Topology

πŸ“ Source: Mathlib/Algebra/Category/Ring/Topology.lean

Statistics

MetricCount
DefinitionsinstTopologicalSpaceHom, mvPolynomialHomeomorph, precompHomeomorph
3
Theoremscontinuous_apply, continuous_precomp, instCompactSpaceHomOfIsTopologicalRingOfT1SpaceOfCarrier, instT2SpaceHomOfCarrier, isClosedEmbedding_hom, isClosedEmbedding_precomp_of_surjective, isEmbedding_hom, isEmbedding_precomp_of_surjective, isEmbedding_pushout, isHomeomorph_precomp, mvPolynomialHomeomorph_apply_fst, mvPolynomialHomeomorph_apply_snd, mvPolynomialHomeomorph_symm_apply_hom, precompHomeomorph_apply, precompHomeomorph_symm_apply
15
Total18

CommRingCat.HomTopology

Definitions

NameCategoryTheorems
instTopologicalSpaceHom πŸ“–CompOp
15 mathmath: isEmbedding_precomp_of_surjective, isClosedEmbedding_precomp_of_surjective, mvPolynomialHomeomorph_apply_snd, instCompactSpaceHomOfIsTopologicalRingOfT1SpaceOfCarrier, continuous_precomp, precompHomeomorph_apply, isEmbedding_pushout, instT2SpaceHomOfCarrier, precompHomeomorph_symm_apply, isClosedEmbedding_hom, mvPolynomialHomeomorph_symm_apply_hom, isEmbedding_hom, continuous_apply, isHomeomorph_precomp, mvPolynomialHomeomorph_apply_fst
mvPolynomialHomeomorph πŸ“–CompOp
3 mathmath: mvPolynomialHomeomorph_apply_snd, mvPolynomialHomeomorph_symm_apply_hom, mvPolynomialHomeomorph_apply_fst
precompHomeomorph πŸ“–CompOp
2 mathmath: precompHomeomorph_apply, precompHomeomorph_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_apply πŸ“–mathematicalβ€”Continuous
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CommRingCat.carrier
instTopologicalSpaceHom
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.Hom.hom
β€”Continuous.comp
continuous_apply
continuous_induced_dom
continuous_precomp πŸ“–mathematicalβ€”Continuous
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
CategoryTheory.CategoryStruct.comp
β€”continuous_induced_rng
Continuous.comp
Pi.continuous_precomp
continuous_induced_dom
instCompactSpaceHomOfIsTopologicalRingOfT1SpaceOfCarrier πŸ“–mathematicalβ€”CompactSpace
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
β€”Topology.IsClosedEmbedding.compactSpace
Function.compactSpace
isClosedEmbedding_hom
instT2SpaceHomOfCarrier πŸ“–mathematicalβ€”T2Space
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
β€”Topology.IsEmbedding.t2Space
Pi.t2Space
isEmbedding_hom
isClosedEmbedding_hom πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
Pi.topologicalSpace
CommRingCat.carrier
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.Hom.hom
β€”CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
Finite.of_fintype
Function.LeftInverse.surjective
MvPolynomial.evalβ‚‚Hom_X'
MvPolynomial.comp_evalβ‚‚Hom
Topology.IsClosedEmbedding.comp
Homeomorph.isClosedEmbedding
isClosedEmbedding_precomp_of_surjective
isClosedEmbedding_precomp_of_surjective πŸ“–mathematicalCommRingCat.carrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CommRingCat
CommRingCat.instCategory
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Topology.IsClosedEmbedding
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instTopologicalSpaceHom
CategoryTheory.CategoryStruct.comp
β€”isEmbedding_precomp_of_surjective
RingHom.instRingHomClass
isClosed_iInter
IsClosed.preimage
continuous_apply
isClosed_singleton
Set.ext
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
CommRingCat.hom_ext
RingHom.ext
RingHom.liftOfRightInverse_comp_apply
isEmbedding_hom πŸ“–mathematicalβ€”Topology.IsEmbedding
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
Pi.topologicalSpace
CommRingCat.carrier
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.Hom.hom
β€”Topology.IsInducing.induced
CommRingCat.hom_ext
RingHom.ext
isEmbedding_precomp_of_surjective πŸ“–mathematicalCommRingCat.carrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CommRingCat
CommRingCat.instCategory
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Topology.IsEmbedding
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instTopologicalSpaceHom
CategoryTheory.CategoryStruct.comp
β€”Topology.IsEmbedding.of_comp
continuous_precomp
Topology.IsInducing.continuous
Topology.IsInducing.induced
Function.Surjective.isEmbedding_comp
Topology.IsEmbedding.comp
Topology.IsEmbedding.induced
CommRingCat.hom_ext
RingHom.ext
isEmbedding_pushout πŸ“–mathematicalβ€”Topology.IsEmbedding
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.Limits.pushout
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
instTopologicalSpaceHom
instTopologicalSpaceProd
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.pushout.inl
CategoryTheory.Limits.pushout.inr
β€”MvPolynomial.evalβ‚‚Hom_X'
Topology.IsEmbedding.prodMap
isEmbedding_precomp_of_surjective
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
Topology.IsEmbedding.of_comp_iff
RingHom.range_eq_top
top_le_iff
CommRingCat.closure_range_union_range_eq_top_of_isPushout
CategoryTheory.IsPushout.of_hasPushout
Subring.closure_le
Topology.IsEmbedding.comp
Homeomorph.isEmbedding
isEmbedding_graph
continuous_id
CategoryTheory.Limits.pushout.condition
CommRingCat.hom_ext
MvPolynomial.ringHom_ext'
RingHom.ext
MvPolynomial.comp_evalβ‚‚Hom
MvPolynomial.evalβ‚‚_C
isHomeomorph_precomp πŸ“–mathematicalβ€”IsHomeomorph
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
CategoryTheory.CategoryStruct.comp
β€”Homeomorph.isHomeomorph
mvPolynomialHomeomorph_apply_fst πŸ“–mathematicalβ€”Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
DFunLike.coe
Homeomorph
CommRingCat.of
MvPolynomial
CommRingCat.carrier
CommRing.toCommSemiring
CommRingCat.commRing
MvPolynomial.instCommRingMvPolynomial
instTopologicalSpaceHom
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
mvPolynomialHomeomorph
CategoryTheory.CategoryStruct.comp
CommRingCat.ofHom
MvPolynomial.C
β€”β€”
mvPolynomialHomeomorph_apply_snd πŸ“–mathematicalβ€”Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
DFunLike.coe
Homeomorph
CommRingCat.of
MvPolynomial
CommRingCat.carrier
CommRing.toCommSemiring
CommRingCat.commRing
MvPolynomial.instCommRingMvPolynomial
instTopologicalSpaceHom
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
mvPolynomialHomeomorph
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
CategoryTheory.ConcreteCategory.hom
CommRingCat.instConcreteCategoryRingHomCarrier
MvPolynomial.X
β€”β€”
mvPolynomialHomeomorph_symm_apply_hom πŸ“–mathematicalβ€”CommRingCat.Hom.hom
CommRingCat.of
MvPolynomial
CommRingCat.carrier
CommRing.toCommSemiring
CommRingCat.commRing
MvPolynomial.instCommRingMvPolynomial
DFunLike.coe
Homeomorph
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceProd
instTopologicalSpaceHom
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
mvPolynomialHomeomorph
MvPolynomial.evalβ‚‚Hom
β€”β€”
precompHomeomorph_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
EquivLike.toFunLike
Homeomorph.instEquivLike
precompHomeomorph
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
β€”β€”
precompHomeomorph_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Quiver.Hom
CommRingCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
instTopologicalSpaceHom
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
precompHomeomorph
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.inv
β€”β€”

---

← Back to Index