Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Category/Semigrp/Basic.lean

Statistics

MetricCount
DefinitionstoAddMagmaCatIso, toAddSemigrpIso, AddMagmaCat, hom, hom', carrier, instCategory, instCoeSortType, instConcreteCategoryAddHomCarrier, instInhabited, of, ofHom, str, AddSemigrp, hom, hom', carrier, hasForgetToAddMagmaCat, instCategory, instCoeSortType, instConcreteCategoryAddHomCarrier, instInhabited, of, ofHom, str, addMagmaCatIsoToAddEquiv, addSemigrpIsoToAddEquiv, magmaCatIsoToMulEquiv, semigrpIsoToMulEquiv, MagmaCat, hom, hom, hom', carrier, instCategory, instCoeSortType, instConcreteCategoryMulHomCarrier, instInhabited, of, ofHom, str, toMagmaCatIso, toSemigrpIso, hom, hom, hom', carrier, hasForgetToMagmaCat, instCategory, instCoeSortType, instConcreteCategoryMulHomCarrier, instInhabited, of, ofHom, str, addEquivIsoAddMagmaIso, addEquivIsoAddSemigrpIso, mulEquivIsoMagmaIso, mulEquivIsoSemigrpIso
59
TheoremstoAddMagmaCatIso_hom, toAddMagmaCatIso_inv, toAddSemigrpIso_hom, toAddSemigrpIso_inv, ext, ext_iff, addEquiv_coe_eq, coe_comp, coe_id, coe_of, comp_apply, ext, ext_iff, forgetReflectsIsos, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_neg_apply, hom_ofHom, id_apply, neg_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, ext, ext_iff, addEquiv_coe_eq, coe_comp, coe_id, coe_of, comp_apply, ext, ext_iff, forgetReflectsIsos, forgetβ‚‚_full, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_neg_apply, hom_ofHom, id_apply, neg_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, ext, ext_iff, coe_comp, coe_id, coe_of, comp_apply, ext, ext_iff, forgetReflectsIsos, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, mulEquiv_coe_eq, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, toMagmaCatIso_hom, toMagmaCatIso_inv, toSemigrpIso_hom, toSemigrpIso_inv, ext, ext_iff, coe_comp, coe_id, coe_of, comp_apply, ext, ext_iff, forgetReflectsIsos, forget_map, forgetβ‚‚_full, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, mulEquiv_coe_eq, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id
101
Total160

AddEquiv

Definitions

NameCategoryTheorems
toAddMagmaCatIso πŸ“–CompOp
2 mathmath: toAddMagmaCatIso_inv, toAddMagmaCatIso_hom
toAddSemigrpIso πŸ“–CompOp
2 mathmath: toAddSemigrpIso_hom, toAddSemigrpIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
toAddMagmaCatIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
AddMagmaCat
AddMagmaCat.instCategory
AddMagmaCat.of
toAddMagmaCatIso
AddMagmaCat.ofHom
toAddHom
β€”β€”
toAddMagmaCatIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
AddMagmaCat
AddMagmaCat.instCategory
AddMagmaCat.of
toAddMagmaCatIso
AddMagmaCat.ofHom
toAddHom
symm
β€”β€”
toAddSemigrpIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
AddSemigrp
AddSemigrp.instCategory
AddSemigrp.of
toAddSemigrpIso
AddSemigrp.ofHom
toAddHom
AddSemigroup.toAdd
β€”β€”
toAddSemigrpIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
AddSemigrp
AddSemigrp.instCategory
AddSemigrp.of
toAddSemigrpIso
AddSemigrp.ofHom
toAddHom
AddSemigroup.toAdd
symm
β€”β€”

AddMagmaCat

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
16 mathmath: coe_id, forgetReflectsIsos, addEquiv_coe_eq, forget_map, ofHom_apply, coe_comp, coe_of, ext_iff, AddSemigrp.forgetβ‚‚_full, hom_id, comp_apply, id_apply, neg_hom_apply, hom_comp, hom_neg_apply, ofHom_hom
instCategory πŸ“–CompOp
17 mathmath: coe_id, ofHom_comp, forgetReflectsIsos, AddEquiv.toAddMagmaCatIso_inv, forget_map, ofHom_apply, coe_comp, ext_iff, ofHom_id, AddSemigrp.forgetβ‚‚_full, hom_id, comp_apply, id_apply, AddEquiv.toAddMagmaCatIso_hom, neg_hom_apply, hom_comp, hom_neg_apply
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryAddHomCarrier πŸ“–CompOp
11 mathmath: coe_id, forgetReflectsIsos, forget_map, ofHom_apply, coe_comp, ext_iff, AddSemigrp.forgetβ‚‚_full, comp_apply, id_apply, neg_hom_apply, hom_neg_apply
instInhabited πŸ“–CompOpβ€”
of πŸ“–CompOp
8 mathmath: ofHom_comp, addEquiv_coe_eq, AddEquiv.toAddMagmaCatIso_inv, ofHom_apply, coe_of, ofHom_id, AddEquiv.toAddMagmaCatIso_hom, hom_ofHom
ofHom πŸ“–CompOp
8 mathmath: ofHom_comp, addEquiv_coe_eq, AddEquiv.toAddMagmaCatIso_inv, ofHom_apply, ofHom_id, AddEquiv.toAddMagmaCatIso_hom, hom_ofHom, ofHom_hom
str πŸ“–CompOp
15 mathmath: coe_id, forgetReflectsIsos, addEquiv_coe_eq, forget_map, ofHom_apply, coe_comp, ext_iff, AddSemigrp.forgetβ‚‚_full, hom_id, comp_apply, id_apply, neg_hom_apply, hom_comp, hom_neg_apply, ofHom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
addEquiv_coe_eq πŸ“–mathematicalβ€”Hom.hom
of
ofHom
AddHomClass.toAddHom
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquivClass.instAddHomClass
AddEquiv.instAddEquivClass
carrier
str
β€”AddEquivClass.instAddHomClass
AddEquiv.instAddEquivClass
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
β€”ext
forgetReflectsIsos πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
AddMagmaCat
instCategory
CategoryTheory.types
CategoryTheory.forget
AddHom
carrier
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
β€”Equiv.left_inv
Equiv.right_inv
AddHom.map_add'
CategoryTheory.Iso.isIso_hom
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
AddMagmaCat
instCategory
CategoryTheory.types
CategoryTheory.forget
AddHom
carrier
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
AddMagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
AddHom.comp
carrier
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
AddMagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
AddHom.id
carrier
str
β€”β€”
hom_neg_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
neg_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
AddMagmaCat
instCategory
AddHom
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
AddHom.comp
CategoryTheory.CategoryStruct.comp
AddMagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
AddHom.id
CategoryTheory.CategoryStruct.id
AddMagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

AddMagmaCat.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
6 mathmath: AddMagmaCat.hom_ext_iff, AddMagmaCat.addEquiv_coe_eq, AddMagmaCat.hom_id, AddMagmaCat.hom_ofHom, AddMagmaCat.hom_comp, AddMagmaCat.ofHom_hom
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

AddSemigrp

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
17 mathmath: coe_id, addEquiv_coe_eq, hom_id, comp_apply, hom_comp, neg_hom_apply, hom_neg_apply, ofHom_apply, forgetβ‚‚_full, AddMonCat.adjoinZero_obj_coe, coe_comp, id_apply, coe_of, ofHom_hom, AddMonCat.adjoinZero_map, forgetReflectsIsos, ext_iff
hasForgetToAddMagmaCat πŸ“–CompOp
1 mathmath: forgetβ‚‚_full
instCategory πŸ“–CompOp
18 mathmath: coe_id, hom_id, comp_apply, hom_comp, neg_hom_apply, AddEquiv.toAddSemigrpIso_hom, hom_neg_apply, ofHom_apply, forgetβ‚‚_full, AddMonCat.adjoinZero_obj_coe, coe_comp, ofHom_comp, id_apply, AddEquiv.toAddSemigrpIso_inv, AddMonCat.adjoinZero_map, forgetReflectsIsos, ofHom_id, ext_iff
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryAddHomCarrier πŸ“–CompOp
10 mathmath: coe_id, comp_apply, neg_hom_apply, hom_neg_apply, ofHom_apply, forgetβ‚‚_full, coe_comp, id_apply, forgetReflectsIsos, ext_iff
instInhabited πŸ“–CompOpβ€”
of πŸ“–CompOp
8 mathmath: addEquiv_coe_eq, AddEquiv.toAddSemigrpIso_hom, ofHom_apply, ofHom_comp, coe_of, AddEquiv.toAddSemigrpIso_inv, hom_ofHom, ofHom_id
ofHom πŸ“–CompOp
8 mathmath: addEquiv_coe_eq, AddEquiv.toAddSemigrpIso_hom, ofHom_apply, ofHom_comp, ofHom_hom, AddEquiv.toAddSemigrpIso_inv, hom_ofHom, ofHom_id
str πŸ“–CompOp
15 mathmath: coe_id, addEquiv_coe_eq, hom_id, comp_apply, hom_comp, neg_hom_apply, hom_neg_apply, ofHom_apply, forgetβ‚‚_full, coe_comp, id_apply, ofHom_hom, AddMonCat.adjoinZero_map, forgetReflectsIsos, ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
addEquiv_coe_eq πŸ“–mathematicalβ€”Hom.hom
of
ofHom
AddHomClass.toAddHom
AddEquiv
AddSemigroup.toAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquivClass.instAddHomClass
AddEquiv.instAddEquivClass
carrier
str
β€”AddEquivClass.instAddHomClass
AddEquiv.instAddEquivClass
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
β€”ext
forgetReflectsIsos πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
AddSemigrp
instCategory
CategoryTheory.types
CategoryTheory.forget
AddHom
carrier
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
β€”Equiv.left_inv
Equiv.right_inv
AddHom.map_add'
CategoryTheory.Iso.isIso_hom
forgetβ‚‚_full πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
AddSemigrp
instCategory
AddMagmaCat
AddMagmaCat.instCategory
CategoryTheory.forgetβ‚‚
AddHom
carrier
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
AddMagmaCat.carrier
AddMagmaCat.str
AddMagmaCat.instConcreteCategoryAddHomCarrier
hasForgetToAddMagmaCat
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
AddSemigrp
CategoryTheory.Category.toCategoryStruct
instCategory
AddHom.comp
carrier
AddSemigroup.toAdd
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
AddSemigrp
CategoryTheory.Category.toCategoryStruct
instCategory
AddHom.id
carrier
AddSemigroup.toAdd
str
β€”β€”
hom_neg_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
neg_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
AddSemigrp
instCategory
AddHom
AddSemigroup.toAdd
str
AddHom.funLike
instConcreteCategoryAddHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
AddHom.comp
AddSemigroup.toAdd
CategoryTheory.CategoryStruct.comp
AddSemigrp
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
AddHom.id
AddSemigroup.toAdd
CategoryTheory.CategoryStruct.id
AddSemigrp
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

AddSemigrp.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
7 mathmath: AddSemigrp.addEquiv_coe_eq, AddSemigrp.hom_id, AddSemigrp.hom_comp, AddSemigrp.hom_ext_iff, AddSemigrp.ofHom_hom, AddSemigrp.hom_ofHom, AddMonCat.adjoinZero_map
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

CategoryTheory.Iso

Definitions

NameCategoryTheorems
addMagmaCatIsoToAddEquiv πŸ“–CompOpβ€”
addSemigrpIsoToAddEquiv πŸ“–CompOpβ€”
magmaCatIsoToMulEquiv πŸ“–CompOpβ€”
semigrpIsoToMulEquiv πŸ“–CompOpβ€”

MagmaCat

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
16 mathmath: coe_comp, Semigrp.forgetβ‚‚_full, id_apply, mulEquiv_coe_eq, coe_id, ofHom_apply, hom_inv_apply, ext_iff, ofHom_hom, forget_map, inv_hom_apply, hom_comp, forgetReflectsIsos, hom_id, comp_apply, coe_of
instCategory πŸ“–CompOp
17 mathmath: coe_comp, Semigrp.forgetβ‚‚_full, MulEquiv.toMagmaCatIso_hom, id_apply, coe_id, ofHom_apply, hom_inv_apply, ext_iff, forget_map, MulEquiv.toMagmaCatIso_inv, inv_hom_apply, hom_comp, forgetReflectsIsos, ofHom_id, hom_id, comp_apply, ofHom_comp
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryMulHomCarrier πŸ“–CompOp
11 mathmath: coe_comp, Semigrp.forgetβ‚‚_full, id_apply, coe_id, ofHom_apply, hom_inv_apply, ext_iff, forget_map, inv_hom_apply, forgetReflectsIsos, comp_apply
instInhabited πŸ“–CompOpβ€”
of πŸ“–CompOp
8 mathmath: MulEquiv.toMagmaCatIso_hom, mulEquiv_coe_eq, ofHom_apply, MulEquiv.toMagmaCatIso_inv, hom_ofHom, ofHom_id, coe_of, ofHom_comp
ofHom πŸ“–CompOp
8 mathmath: MulEquiv.toMagmaCatIso_hom, mulEquiv_coe_eq, ofHom_apply, ofHom_hom, MulEquiv.toMagmaCatIso_inv, hom_ofHom, ofHom_id, ofHom_comp
str πŸ“–CompOp
15 mathmath: coe_comp, Semigrp.forgetβ‚‚_full, id_apply, mulEquiv_coe_eq, coe_id, ofHom_apply, hom_inv_apply, ext_iff, ofHom_hom, forget_map, inv_hom_apply, hom_comp, forgetReflectsIsos, hom_id, comp_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
β€”ext
forgetReflectsIsos πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
MagmaCat
instCategory
CategoryTheory.types
CategoryTheory.forget
MulHom
carrier
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
β€”Equiv.left_inv
Equiv.right_inv
MulHom.map_mul'
CategoryTheory.Iso.isIso_hom
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
MagmaCat
instCategory
CategoryTheory.types
CategoryTheory.forget
MulHom
carrier
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
MagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
MulHom.comp
carrier
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
MagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
MulHom.id
carrier
str
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
mulEquiv_coe_eq πŸ“–mathematicalβ€”Hom.hom
of
ofHom
MulHomClass.toMulHom
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMulHomClass
MulEquiv.instMulEquivClass
carrier
str
β€”MulEquivClass.instMulHomClass
MulEquiv.instMulEquivClass
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
MagmaCat
instCategory
MulHom
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
MulHom.comp
CategoryTheory.CategoryStruct.comp
MagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
MulHom.id
CategoryTheory.CategoryStruct.id
MagmaCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

MagmaCat.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
6 mathmath: MagmaCat.hom_ext_iff, MagmaCat.mulEquiv_coe_eq, MagmaCat.ofHom_hom, MagmaCat.hom_ofHom, MagmaCat.hom_comp, MagmaCat.hom_id
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

MagmaCat.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

MulEquiv

Definitions

NameCategoryTheorems
toMagmaCatIso πŸ“–CompOp
2 mathmath: toMagmaCatIso_hom, toMagmaCatIso_inv
toSemigrpIso πŸ“–CompOp
2 mathmath: toSemigrpIso_inv, toSemigrpIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
toMagmaCatIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
MagmaCat
MagmaCat.instCategory
MagmaCat.of
toMagmaCatIso
MagmaCat.ofHom
toMulHom
β€”β€”
toMagmaCatIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
MagmaCat
MagmaCat.instCategory
MagmaCat.of
toMagmaCatIso
MagmaCat.ofHom
toMulHom
symm
β€”β€”
toSemigrpIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Semigrp
Semigrp.instCategory
Semigrp.of
toSemigrpIso
Semigrp.ofHom
toMulHom
Semigroup.toMul
β€”β€”
toSemigrpIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Semigrp
Semigrp.instCategory
Semigrp.of
toSemigrpIso
Semigrp.ofHom
toMulHom
Semigroup.toMul
symm
β€”β€”

Semigrp

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
18 mathmath: hom_comp, hom_inv_apply, inv_hom_apply, mulEquiv_coe_eq, id_apply, hom_id, forgetβ‚‚_full, ext_iff, comp_apply, forgetReflectsIsos, MonCat.adjoinOne_obj_coe, MonCat.adjoinOne_map, ofHom_hom, coe_id, ofHom_apply, forget_map, coe_comp, coe_of
hasForgetToMagmaCat πŸ“–CompOp
1 mathmath: forgetβ‚‚_full
instCategory πŸ“–CompOp
19 mathmath: hom_comp, ofHom_comp, hom_inv_apply, inv_hom_apply, id_apply, hom_id, forgetβ‚‚_full, ext_iff, comp_apply, forgetReflectsIsos, MonCat.adjoinOne_obj_coe, MonCat.adjoinOne_map, MulEquiv.toSemigrpIso_inv, ofHom_id, coe_id, MulEquiv.toSemigrpIso_hom, ofHom_apply, forget_map, coe_comp
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryMulHomCarrier πŸ“–CompOp
11 mathmath: hom_inv_apply, inv_hom_apply, id_apply, forgetβ‚‚_full, ext_iff, comp_apply, forgetReflectsIsos, coe_id, ofHom_apply, forget_map, coe_comp
instInhabited πŸ“–CompOpβ€”
of πŸ“–CompOp
8 mathmath: hom_ofHom, ofHom_comp, mulEquiv_coe_eq, MulEquiv.toSemigrpIso_inv, ofHom_id, MulEquiv.toSemigrpIso_hom, ofHom_apply, coe_of
ofHom πŸ“–CompOp
8 mathmath: hom_ofHom, ofHom_comp, mulEquiv_coe_eq, ofHom_hom, MulEquiv.toSemigrpIso_inv, ofHom_id, MulEquiv.toSemigrpIso_hom, ofHom_apply
str πŸ“–CompOp
16 mathmath: hom_comp, hom_inv_apply, inv_hom_apply, mulEquiv_coe_eq, id_apply, hom_id, forgetβ‚‚_full, ext_iff, comp_apply, forgetReflectsIsos, MonCat.adjoinOne_map, ofHom_hom, coe_id, ofHom_apply, forget_map, coe_comp

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
β€”ext
forgetReflectsIsos πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
Semigrp
instCategory
CategoryTheory.types
CategoryTheory.forget
MulHom
carrier
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
β€”Equiv.left_inv
Equiv.right_inv
MulHom.map_mul'
CategoryTheory.Iso.isIso_hom
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Semigrp
instCategory
CategoryTheory.types
CategoryTheory.forget
MulHom
carrier
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
forgetβ‚‚_full πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
Semigrp
instCategory
MagmaCat
MagmaCat.instCategory
CategoryTheory.forgetβ‚‚
MulHom
carrier
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
MagmaCat.carrier
MagmaCat.str
MagmaCat.instConcreteCategoryMulHomCarrier
hasForgetToMagmaCat
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
Semigrp
CategoryTheory.Category.toCategoryStruct
instCategory
MulHom.comp
carrier
Semigroup.toMul
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
Semigrp
CategoryTheory.Category.toCategoryStruct
instCategory
MulHom.id
carrier
Semigroup.toMul
str
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
mulEquiv_coe_eq πŸ“–mathematicalβ€”Hom.hom
of
ofHom
MulHomClass.toMulHom
MulEquiv
Semigroup.toMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMulHomClass
MulEquiv.instMulEquivClass
carrier
str
β€”MulEquivClass.instMulHomClass
MulEquiv.instMulEquivClass
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
Semigrp
instCategory
MulHom
Semigroup.toMul
str
MulHom.funLike
instConcreteCategoryMulHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
MulHom.comp
Semigroup.toMul
CategoryTheory.CategoryStruct.comp
Semigrp
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
MulHom.id
Semigroup.toMul
CategoryTheory.CategoryStruct.id
Semigrp
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

Semigrp.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
7 mathmath: Semigrp.hom_comp, Semigrp.hom_ofHom, Semigrp.mulEquiv_coe_eq, Semigrp.hom_id, MonCat.adjoinOne_map, Semigrp.ofHom_hom, Semigrp.hom_ext_iff
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

Semigrp.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
AddMagmaCat πŸ“–CompData
17 mathmath: AddMagmaCat.coe_id, AddMagmaCat.ofHom_comp, AddMagmaCat.forgetReflectsIsos, AddEquiv.toAddMagmaCatIso_inv, AddMagmaCat.forget_map, AddMagmaCat.ofHom_apply, AddMagmaCat.coe_comp, AddMagmaCat.ext_iff, AddMagmaCat.ofHom_id, AddSemigrp.forgetβ‚‚_full, AddMagmaCat.hom_id, AddMagmaCat.comp_apply, AddMagmaCat.id_apply, AddEquiv.toAddMagmaCatIso_hom, AddMagmaCat.neg_hom_apply, AddMagmaCat.hom_comp, AddMagmaCat.hom_neg_apply
AddSemigrp πŸ“–CompData
18 mathmath: AddSemigrp.coe_id, AddSemigrp.hom_id, AddSemigrp.comp_apply, AddSemigrp.hom_comp, AddSemigrp.neg_hom_apply, AddEquiv.toAddSemigrpIso_hom, AddSemigrp.hom_neg_apply, AddSemigrp.ofHom_apply, AddSemigrp.forgetβ‚‚_full, AddMonCat.adjoinZero_obj_coe, AddSemigrp.coe_comp, AddSemigrp.ofHom_comp, AddSemigrp.id_apply, AddEquiv.toAddSemigrpIso_inv, AddMonCat.adjoinZero_map, AddSemigrp.forgetReflectsIsos, AddSemigrp.ofHom_id, AddSemigrp.ext_iff
MagmaCat πŸ“–CompData
17 mathmath: MagmaCat.coe_comp, Semigrp.forgetβ‚‚_full, MulEquiv.toMagmaCatIso_hom, MagmaCat.id_apply, MagmaCat.coe_id, MagmaCat.ofHom_apply, MagmaCat.hom_inv_apply, MagmaCat.ext_iff, MagmaCat.forget_map, MulEquiv.toMagmaCatIso_inv, MagmaCat.inv_hom_apply, MagmaCat.hom_comp, MagmaCat.forgetReflectsIsos, MagmaCat.ofHom_id, MagmaCat.hom_id, MagmaCat.comp_apply, MagmaCat.ofHom_comp
addEquivIsoAddMagmaIso πŸ“–CompOpβ€”
addEquivIsoAddSemigrpIso πŸ“–CompOpβ€”
mulEquivIsoMagmaIso πŸ“–CompOpβ€”
mulEquivIsoSemigrpIso πŸ“–CompOpβ€”

---

← Back to Index