Documentation Verification Report

CharAndCard

πŸ“ Source: Mathlib/Algebra/CharP/CharAndCard.lean

Statistics

MetricCount
Definitions0
TheoremscharP_of_card_eq_prime, charP_of_card_eq_prime_pow, isUnit_iff_not_dvd_char, isUnit_iff_not_dvd_char_of_ringChar_ne_zero, not_isUnit_prime_of_dvd_card, prime_dvd_char_iff_dvd_card
6
Total6

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
charP_of_card_eq_prime πŸ“–mathematicalFintype.cardCharP
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”Fintype.one_lt_card_iff_nontrivial
Nat.Prime.one_lt
Fact.out
CharP.charP_iff_prime_eq_zero
Nat.cast_card_eq_zero
charP_of_card_eq_prime_pow πŸ“–mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
CharP
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”not_subsingleton
IsDomain.toNontrivial
Fintype.card_le_one_iff_subsingleton
pow_zero
Eq.le
CharP.charP_iff_prime_eq_zero
Fact.out
Nat.cast_pow
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
Nat.cast_card_eq_zero
isUnit_iff_not_dvd_char πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ringChar
Semiring.toNonAssocSemiring
β€”isUnit_iff_not_dvd_char_of_ringChar_ne_zero
CharP.char_ne_zero_of_finite
ringChar.charP
isUnit_iff_not_dvd_char_of_ringChar_ne_zero πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ringChar
Semiring.toNonAssocSemiring
β€”CharP.cast_eq_zero
ringChar.charP
Fact.out
IsUnit.exists_left_inv
Nat.Prime.not_dvd_one
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
mul_one
mul_assoc
mul_comm
CharP.intCast_eq_zero_iff
Nat.cast_zero
Int.cast_zero
Int.cast_natCast
one_mul
MulZeroClass.mul_zero
Nat.cast_mul
Nat.Coprime.isCoprime
Nat.Prime.coprime_iff_not_dvd
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
add_zero
Int.cast_add
Int.cast_mul
Int.cast_one
not_isUnit_prime_of_dvd_card πŸ“–mathematicalFintype.cardIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”isUnit_iff_not_dvd_char
Finite.of_fintype
prime_dvd_char_iff_dvd_card
prime_dvd_char_iff_dvd_card πŸ“–mathematicalβ€”ringChar
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Fintype.card
β€”Dvd.dvd.trans
CharP.intCast_eq_zero_iff
ringChar.charP
Nat.cast_zero
Int.cast_zero
Int.cast_natCast
Nat.cast_card_eq_zero
exists_prime_addOrderOf_dvd_card
addOrderOf_nsmul_eq_zero
IsUnit.exists_left_inv
isUnit_iff_not_dvd_char
Finite.of_fintype
AddMonoid.addOrderOf_eq_one_iff
ne_of_eq_of_ne
Nat.Prime.ne_one
Fact.out
one_mul
mul_assoc
MulZeroClass.mul_zero
nsmul_eq_mul

---

← Back to Index