Defs
π Source: Mathlib/Algebra/CharP/Defs.lean
Statistics
CharP
Theorems
CharP.CharOne
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
subsingleton π | β | β | β | β | one_mulNat.cast_oneCharP.cast_eq_zeroMulZeroClass.zero_mul |
ExpChar
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq π | β | β | β | β | Nat.not_prime_zeroCharP.eqCharP.ofCharZero |
exists π | mathematical | β | ExpCharAddGroupWithOne.toAddMonoidWithOneRing.toAddGroupWithOne | β | CharP.exists'IsDomain.to_noZeroDivisorsIsDomain.toNontrivial |
exists_unique π | mathematical | β | ExistsUniqueExpCharAddGroupWithOne.toAddMonoidWithOneRing.toAddGroupWithOne | β | existseq |
NeZero
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
not_char_dvd π | β | β | β | β | CharP.cast_eq_zero_iff |
of_not_dvd π | mathematical | β | AddZero.toZeroAddZeroClass.toAddZeroAddMonoid.toAddZeroClassAddMonoidWithOne.toAddMonoidAddMonoidWithOne.toNatCast | β | Iff.notCharP.cast_eq_zero_iff |
(root)
Definitions
Theorems
ringChar
Theorems
ringChar.Nat
Theorems
ringExpChar
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq π | mathematical | β | ringExpChar | β | eq_1ringChar.eqCharP.ofCharZeroLT.lt.leNat.Prime.one_lt |
eq_iff π | mathematical | β | ringExpCharSemiring.toNonAssocSemiringRing.toSemiringExpCharAddGroupWithOne.toAddMonoidWithOneRing.toAddGroupWithOne | β | of_eqeq |
eq_one π | mathematical | β | ringExpChar | β | eq_1ringChar.eq_zeromax_eq_right |
expChar π | mathematical | β | ExpCharAddGroupWithOne.toAddMonoidWithOneRing.toAddGroupWithOneringExpCharSemiring.toNonAssocSemiringRing.toSemiring | β | ExpChar.existseq |
of_eq π | mathematical | ringExpCharSemiring.toNonAssocSemiringRing.toSemiring | ExpCharAddGroupWithOne.toAddMonoidWithOneRing.toAddGroupWithOne | β | expChar |
---