Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/CharP/Defs.lean

Statistics

MetricCount
DefinitionsExpChar, ringChar, ringExpChar
3
Theoremssubsingleton, cast_eq_iff_mod_eq, cast_eq_mod, cast_eq_zero, cast_eq_zero_iff, charP_to_charZero, charP_zero_iff_charZero, char_is_prime_of_pos, char_is_prime_of_two_le, char_is_prime_or_zero, char_ne_one, char_prime_of_ne_zero, eq, exists, exists', existsUnique, false_of_nontrivial_of_char_one, intCast_eq_zero_iff, neg_one_ne_one, nontrivial_of_char_ne_one, ofCharZero, ofNat_eq_zero, ofNat_eq_zero', ringChar_ne_one, ringChar_zero_iff_CharZero, eq, exists, exists_unique, not_char_dvd, of_not_dvd, charP_iff, charZero_of_expChar_one', char_eq_expChar_iff, char_zero_of_expChar_one, expChar_is_prime_or_one, expChar_ne_zero, expChar_one, expChar_one_iff_char_zero, expChar_one_of_char_zero, expChar_pos, expChar_pow_pos, expChar_prime, cast_ringChar, charP, dvd, eq, eq_iff, eq_zero, of_eq, ringChar_eq_one, ringChar_subsingleton, spec, eq, eq_iff, eq_one, expChar, of_eq
57
Total60

CharP

Theorems

NameKindAssumesProvesValidatesDepends On
cast_eq_iff_mod_eq πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCastβ€”Nat.cast_add
left_eq_add
cast_eq_zero_iff
add_zero
LT.lt.le
cast_eq_mod πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCastβ€”cast_eq_zero_iff
Nat.cast_add
add_zero
cast_eq_zero πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”cast_eq_zero_iff
dvd_rfl
cast_eq_zero_iff πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”β€”
charP_to_charZero πŸ“–mathematicalβ€”CharZero
AddGroupWithOne.toAddMonoidWithOne
β€”charZero_of_inj_zero
eq_zero_of_zero_dvd
cast_eq_zero_iff
charP_zero_iff_charZero πŸ“–mathematicalβ€”CharP
AddGroupWithOne.toAddMonoidWithOne
CharZero
β€”charP_to_charZero
ofCharZero
char_is_prime_of_pos πŸ“–mathematicalβ€”Fact
Nat.Prime
β€”char_is_prime_or_zero
char_is_prime_of_two_le πŸ“–mathematicalβ€”Nat.Primeβ€”cast_eq_zero_iff
dvd_refl
Nat.cast_mul
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
Dvd.dvd.antisymm'
Nat.instIsCancelMulZero
Unique.instSubsingleton
dvd_of_mul_left_eq
Dvd.dvd.antisymm
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
LT.lt.ne'
Nat.prime_def
char_is_prime_or_zero πŸ“–mathematicalβ€”Nat.Primeβ€”char_ne_one
char_is_prime_of_two_le
char_ne_one πŸ“–β€”β€”β€”β€”NeZero.one
Nat.cast_one
cast_eq_zero_iff
dvd_refl
one_ne_zero
char_prime_of_ne_zero πŸ“–mathematicalβ€”Nat.Primeβ€”char_is_prime_or_zero
eq πŸ“–β€”β€”β€”β€”cast_eq_zero_iff
cast_eq_zero
exists πŸ“–mathematicalβ€”CharP
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”by_cases
zero_dvd_iff
Nat.cast_zero
by_contradiction
Nat.find_min
Nat.find_spec
add_zero
MulZeroClass.zero_mul
of_not_not
Nat.cast_mul
Nat.cast_add
exists' πŸ“–mathematicalβ€”CharZero
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Fact
Nat.Prime
CharP
β€”exists
char_is_prime_or_zero
charP_to_charZero
existsUnique πŸ“–mathematicalβ€”ExistsUnique
CharP
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”exists
eq
false_of_nontrivial_of_char_one πŸ“–β€”β€”β€”β€”CharOne.subsingleton
false_of_nontrivial_of_subsingleton
intCast_eq_zero_iff πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
β€”lt_trichotomy
neg_eq_zero
Int.cast_neg
CanLift.prf
instCanLiftIntNatCastLeOfNat
le_of_lt
Int.cast_natCast
cast_eq_zero_iff
Int.cast_zero
neg_one_ne_one πŸ“–β€”β€”β€”β€”sub_ne_zero
sub_neg_eq_add
Nat.instAtLeastTwoHAddOfNat
one_add_one_eq_two
Nat.cast_two
cast_eq_zero_iff
LT.lt.not_ge
Fact.out
nontrivial_of_char_ne_one πŸ“–mathematicalβ€”Nontrivialβ€”cast_eq_zero_iff
ofCharZero πŸ“–mathematicalβ€”CharPβ€”zero_dvd_iff
Nat.cast_zero
ofNat_eq_zero πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”cast_eq_zero
ofNat_eq_zero' πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”cast_eq_zero_iff
ringChar_ne_one πŸ“–β€”β€”β€”β€”not_subsingleton
ringChar_zero_iff_CharZero πŸ“–mathematicalβ€”ringChar
NonAssocRing.toNonAssocSemiring
CharZero
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”ringChar.eq_iff
charP_zero_iff_charZero

CharP.CharOne

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton πŸ“–β€”β€”β€”β€”one_mul
Nat.cast_one
CharP.cast_eq_zero
MulZeroClass.zero_mul

ExpChar

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–β€”β€”β€”β€”Nat.not_prime_zero
CharP.eq
CharP.ofCharZero
exists πŸ“–mathematicalβ€”ExpChar
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”CharP.exists'
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
exists_unique πŸ“–mathematicalβ€”ExistsUnique
ExpChar
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”exists
eq

NeZero

Theorems

NameKindAssumesProvesValidatesDepends On
not_char_dvd πŸ“–β€”β€”β€”β€”CharP.cast_eq_zero_iff
of_not_dvd πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toNatCast
β€”Iff.not
CharP.cast_eq_zero_iff

(root)

Definitions

NameCategoryTheorems
ExpChar πŸ“–CompData
23 mathmath: ExpChar.expChar_center_iff, RingHom.expChar_iff, ExpChar.of_injective_algebraMap', ringExpChar.eq_iff, ExpChar.congr, ringExpChar.of_eq, Polynomial.SplittingField.instExpChar, expChar_one, expChar_of_injective_ringHom, instExpCharProd, Polynomial.instExpChar, ringExpChar.expChar, IntermediateField.expChar, RatFunc.instExpChar, Subfield.expChar, expChar_of_injective_algebraMap, MvPolynomial.instExpChar, IntermediateField.expChar', instExpCharLinearMapSubtypeMemSubringCenterId, RingHom.expChar, ExpChar.exists_unique, ExpChar.exists, expChar_prime
ringChar πŸ“–CompOp
23 mathmath: ringChar.ringChar_eq_one, ringChar.dvd, MulChar.map_ringChar, ringChar.eq, ringChar.ringChar_subsingleton, Algebra.ringChar_eq, prime_dvd_char_iff_dvd_card, CharP.ringChar_zero_iff_CharZero, CharP.prime_ringChar, not_ringChar_dvd_of_invertible, isUnit_iff_not_dvd_char, ringChar.Nat.cast_ringChar, ringChar.spec, orderOf_neg_one, isUnit_iff_not_dvd_char_of_ringChar_ne_zero, CharP.ringChar_of_prime_eq_zero, ZMod.ringChar_zmod_n, FiniteField.even_card_iff_char_two, Ideal.ringChar_quot, ringChar.eq_iff, neg_one_eq_one_iff, ringChar.charP, ringChar.eq_zero
ringExpChar πŸ“–CompOp
14 mathmath: ringExpChar.eq_one, ringExpChar.eq, IsPurelyInseparable.elemExponent_min, IsPurelyInseparable.hasExponent_iff, IsPurelyInseparable.minpoly_eq, IsPurelyInseparable.HasExponent.has_exponent, ringExpChar.eq_iff, mem_perfectClosure_iff, ringExpChar.expChar, IsPurelyInseparable.minpoly_natDegree_eq, IsPurelyInseparable.exponent_min, IsPurelyInseparable.algebraMap_elemReduct_eq, IsPurelyInseparable.exponent_def, IsPurelyInseparable.elemExponent_def

Theorems

NameKindAssumesProvesValidatesDepends On
charP_iff πŸ“–mathematicalβ€”CharP
AddMonoidWithOne.toNatCast
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”β€”
charZero_of_expChar_one' πŸ“–mathematicalβ€”CharZero
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”CharP.char_ne_one
char_eq_expChar_iff πŸ“–mathematicalβ€”Nat.Primeβ€”CharP.eq
CharP.ofCharZero
char_zero_of_expChar_one πŸ“–β€”β€”β€”β€”CharP.eq
CharP.ofCharZero
CharP.char_ne_one
expChar_is_prime_or_one πŸ“–mathematicalβ€”Nat.Primeβ€”β€”
expChar_ne_zero πŸ“–β€”β€”β€”β€”one_ne_zero
Nat.Prime.ne_zero
expChar_one πŸ“–mathematicalβ€”ExpCharβ€”β€”
expChar_one_iff_char_zero πŸ“–β€”β€”β€”β€”char_zero_of_expChar_one
expChar_one_of_char_zero
expChar_one_of_char_zero πŸ“–β€”β€”β€”β€”Nat.Prime.ne_zero
CharP.eq
expChar_pos πŸ“–β€”β€”β€”β€”expChar_is_prime_or_one
Nat.Prime.pos
expChar_pow_pos πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
β€”expChar_pos
expChar_prime πŸ“–mathematicalβ€”ExpCharβ€”Fact.out

ringChar

Theorems

NameKindAssumesProvesValidatesDepends On
charP πŸ“–mathematicalβ€”CharP
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
ringChar
β€”spec
dvd πŸ“–mathematicalAddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
ringCharβ€”spec
eq πŸ“–mathematicalβ€”ringCharβ€”CharP.existsUnique
eq_iff πŸ“–mathematicalβ€”ringChar
CharP
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”of_eq
eq
eq_zero πŸ“–mathematicalβ€”ringCharβ€”eq
CharP.ofCharZero
of_eq πŸ“–mathematicalringCharCharP
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”CharP.congr
charP
ringChar_eq_one πŸ“–mathematicalβ€”ringCharβ€”spec
Nat.cast_one
subsingleton_iff_zero_eq_one
ringChar_subsingleton πŸ“–mathematicalβ€”ringCharβ€”β€”
spec πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
ringChar
β€”CharP.cast_eq_zero_iff
CharP.existsUnique

ringChar.Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_ringChar πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
ringChar
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”ringChar.spec
dvd_refl

ringExpChar

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–mathematicalβ€”ringExpCharβ€”eq_1
ringChar.eq
CharP.ofCharZero
LT.lt.le
Nat.Prime.one_lt
eq_iff πŸ“–mathematicalβ€”ringExpChar
Semiring.toNonAssocSemiring
Ring.toSemiring
ExpChar
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”of_eq
eq
eq_one πŸ“–mathematicalβ€”ringExpCharβ€”eq_1
ringChar.eq_zero
max_eq_right
expChar πŸ“–mathematicalβ€”ExpChar
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ringExpChar
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”ExpChar.exists
eq
of_eq πŸ“–mathematicalringExpChar
Semiring.toNonAssocSemiring
Ring.toSemiring
ExpChar
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”expChar

---

← Back to Index