Documentation Verification Report

IntermediateField

📁 Source: Mathlib/Algebra/CharP/IntermediateField.lean

Statistics

MetricCount
Definitions0
TheoremscharP, charP', charZero, expChar, expChar'
5
Total5

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
charP 📖mathematicalCharP
IntermediateField
SetLike.instMembership
instSetLike
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
toField
charP_of_injective_algebraMap
IsScalarTower.left
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
charP' 📖mathematicalCharP
IntermediateField
SetLike.instMembership
instSetLike
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
toField
Subfield.charP
charZero 📖mathematicalCharZero
IntermediateField
SetLike.instMembership
instSetLike
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
toField
charZero_of_injective_algebraMap
IsScalarTower.left
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
expChar 📖mathematicalExpChar
IntermediateField
SetLike.instMembership
instSetLike
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
toField
expChar_of_injective_algebraMap
IsScalarTower.left
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
expChar' 📖mathematicalExpChar
IntermediateField
SetLike.instMembership
instSetLike
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
toField
Subfield.expChar

---

← Back to Index