Documentation Verification Report

Invertible

📁 Source: Mathlib/Algebra/CharP/Invertible.lean

Statistics

MetricCount
DefinitionsinvertibleOfCharPNotDvd, invertibleOfCoprime, invertibleOfPos, invertibleOfRingCharNotDvd, invertibleSucc, invertibleThree, invertibleTwo
7
TheoremsintCast_mul_natCast_gcdA_eq_gcd, isUnit_intCast_iff, isUnit_natCast_iff, isUnit_ofNat_iff, natCast_gcdA_mul_intCast_eq_gcd, all, all, invOf_eq_of_coprime, not_ringChar_dvd_of_invertible
9
Total16

CharP

Theorems

NameKindAssumesProvesValidatesDepends On
intCast_mul_natCast_gcdA_eq_gcd 📖mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddGroupWithOne.toIntCast
Nat.gcdA
Nat.gcd_eq_gcd_ab
Int.cast_add
Int.cast_mul
Int.cast_natCast
cast_eq_zero
MulZeroClass.zero_mul
add_zero
isUnit_intCast_iff 📖mathematicalNat.PrimeIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Int.cast_natCast
isUnit_natCast_iff
Int.cast_neg
isUnit_natCast_iff 📖mathematicalNat.PrimeIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
nontrivial_of_char_ne_one
Nat.Prime.ne_one
cast_eq_zero_iff
IsUnit.ne_zero
isUnit_of_invertible
Nat.Prime.coprime_iff_not_dvd
isUnit_ofNat_iff 📖mathematicalNat.PrimeIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
isUnit_natCast_iff
natCast_gcdA_mul_intCast_eq_gcd 📖mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Nat.gcdA
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Commute.eq
Nat.commute_cast
intCast_mul_natCast_gcdA_eq_gcd

Even

Theorems

NameKindAssumesProvesValidatesDepends On
all 📖mathematicalEven
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instAtLeastTwoHAddOfNat
of_isUnit_two
isUnit_of_invertible

Odd

Theorems

NameKindAssumesProvesValidatesDepends On
all 📖mathematicalOdd
Ring.toSemiring
Nat.instAtLeastTwoHAddOfNat
of_isUnit_two
isUnit_of_invertible

(root)

Definitions

NameCategoryTheorems
invertibleOfCharPNotDvd 📖CompOp
invertibleOfCoprime 📖CompOp
invertibleOfPos 📖CompOp
2 mathmath: xInTermsOfW_vars_subset, xInTermsOfW_vars_aux
invertibleOfRingCharNotDvd 📖CompOp
invertibleSucc 📖CompOp
invertibleThree 📖CompOp
invertibleTwo 📖CompOp
42 mathmath: EuclideanGeometry.Sphere.isDiameter_iff_right_mem_and_midpoint_eq_center, AffineSubspace.mem_perpBisector_iff_inner_eq_zero', QuadraticForm.posDef_toMatrix', sbtw_midpoint_of_ne, lineMap_inv_two, IsometryEquiv.midpoint_fixed, AffineIsometryEquiv.pointReflection_midpoint_left, EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint, EuclideanGeometry.oangle_midpoint_right, AffineSubspace.mem_perpBisector_iff_inner_eq_zero, EuclideanGeometry.oangle_midpoint_rev_left, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, midpoint_le_right, dist_midpoint_midpoint_le, IsometryEquiv.map_midpoint, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, EuclideanGeometry.oangle_midpoint_left, midpoint_le_left, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, imaginaryPart_eq_neg_I_smul_skewAdjointPart, Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, AffineSubspace.midpoint_mem_perpBisector, nndist_midpoint_midpoint_le, EuclideanGeometry.angle_left_midpoint_eq_pi_div_two_of_dist_eq, Affine.Triangle.eulerPoint_eq_midpoint, Affine.Simplex.midpoint_faceOppositeCentroid_eulerPoint, EuclideanGeometry.Sphere.IsDiameter.midpoint_eq_center, EuclideanGeometry.oangle_midpoint_rev_right, lineMap_one_half, EuclideanGeometry.angle_midpoint_eq_pi, left_le_midpoint, skewAdjointPart_eq_I_smul_imaginaryPart, EuclideanGeometry.angle_right_midpoint_eq_pi_div_two_of_dist_eq, right_le_midpoint, EuclideanGeometry.dist_sq_add_dist_sq_eq_two_mul_dist_midpoint_sq_add_half_dist_sq, homothety_inv_two, EuclideanGeometry.Sphere.isDiameter_iff_left_mem_and_midpoint_eq_center, wbtw_midpoint, eq_midpoint_of_dist_eq_half, homothety_one_half, AffineIsometryEquiv.pointReflection_midpoint_right, Urysohns.CU.lim_eq_midpoint

Theorems

NameKindAssumesProvesValidatesDepends On
invOf_eq_of_coprime 📖mathematicalInvertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toIntCast
Nat.gcdA
Invertible.congr
not_ringChar_dvd_of_invertible 📖mathematicalringChar
Semiring.toNonAssocSemiring
Ring.toSemiring
ringChar.spec
Invertible.ne_zero

---

← Back to Index