Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Algebra/CharP/Lemmas.lean

Statistics

MetricCount
Definitionsfrobenius, iterateFrobenius
2
Theoremschar_is_prime, char_ne_zero_of_finite, prime_ringChar, ringChar_ne_zero_of_finite, add_pow_prime_eq, add_pow_prime_eq', add_pow_prime_pow_eq, add_pow_prime_pow_eq', exists_add_pow_prime_eq, exists_add_pow_prime_pow_eq, dvd_add_pow_sub_pow_of_dvd, add_pow_char, add_pow_char_of_commute, add_pow_char_pow, add_pow_char_pow_of_commute, add_pow_eq_mul_pow_add_pow_div_char, add_pow_eq_mul_pow_add_pow_div_char_of_commute, add_pow_eq_mul_pow_add_pow_div_expChar, add_pow_eq_mul_pow_add_pow_div_expChar_of_commute, add_pow_expChar, add_pow_expChar_of_commute, add_pow_expChar_pow, add_pow_expChar_pow_of_commute, add_pow_prime_eq, add_pow_prime_eq', add_pow_prime_pow_eq, add_pow_prime_pow_eq', exists_add_pow_prime_eq, exists_add_pow_prime_pow_eq, list_sum_pow_char, list_sum_pow_char_pow, multiset_sum_pow_char, multiset_sum_pow_char_pow, neg_one_pow_char, neg_one_pow_char_pow, neg_one_pow_expChar, neg_one_pow_expChar_pow, sub_pow_char, sub_pow_char_of_commute, sub_pow_char_pow, sub_pow_char_pow_of_commute, sub_pow_eq_mul_pow_sub_pow_div_char, sub_pow_eq_mul_pow_sub_pow_div_char_of_commute, sub_pow_eq_mul_pow_sub_pow_div_expChar, sub_pow_eq_mul_pow_sub_pow_div_expChar_of_commute, sub_pow_expChar, sub_pow_expChar_of_commute, sub_pow_expChar_pow, sub_pow_expChar_pow_of_commute, sum_pow_char, sum_pow_char_pow
51
Total53

CharP

Theorems

NameKindAssumesProvesValidatesDepends On
char_is_prime πŸ“–mathematicalβ€”Nat.Primeβ€”char_is_prime_or_zero
char_ne_zero_of_finite
char_ne_zero_of_finite πŸ“–β€”β€”β€”β€”Nat.cast_injective
charP_to_charZero
not_injective_infinite_finite
instInfiniteNat
prime_ringChar πŸ“–mathematicalβ€”Nat.Prime
ringChar
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”char_prime_of_ne_zero
ringChar.charP
ringChar_ne_zero_of_finite
ringChar_ne_zero_of_finite πŸ“–β€”β€”β€”β€”char_ne_zero_of_finite
ringChar.charP

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
add_pow_prime_eq πŸ“–mathematicalNat.Prime
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”pow_one
Finset.sum_congr
add_pow_prime_pow_eq
add_pow_prime_eq' πŸ“–mathematicalNat.Prime
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”pow_one
Finset.sum_congr
add_pow_prime_pow_eq'
add_pow_prime_pow_eq πŸ“–mathematicalNat.Prime
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
Nat.instMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”add_pow_prime_pow_eq'
mul_assoc
Finset.mul_sum
Finset.sum_congr
Finset.mem_Ioo
mul_pow_sub_one
mul_mul_mul_comm
pow_left
add_pow_prime_pow_eq' πŸ“–mathematicalNat.Prime
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
Nat.instMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”add_pow
Nat.Ico_zero_eq_range
Finset.Ico_add_one_right_eq_Icc
Nat.instNoMaxOrder
Finset.right_notMem_Ico
Finset.sum_congr
Finset.Icc_eq_cons_Ico
zero_le
Nat.instCanonicallyOrderedAdd
Finset.left_notMem_Ioo
Finset.Ico_eq_cons_Ioo
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nat.Prime.pos
Finset.cons.congr_simp
Finset.sum_cons
tsub_self
Nat.instOrderedSub
pow_zero
mul_one
Nat.choose_self
Nat.cast_one
tsub_zero
one_mul
Nat.choose_zero_right
add_assoc
Finset.mul_sum
Finset.mem_Ioo
Nat.cast_comm
mul_assoc
Nat.Prime.dvd_choose_pow
exists_add_pow_prime_eq πŸ“–mathematicalNat.Prime
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”add_pow_prime_eq
exists_add_pow_prime_pow_eq πŸ“–mathematicalNat.Prime
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
Nat.instMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”add_pow_prime_pow_eq

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_add_pow_sub_pow_of_dvd πŸ“–mathematicalNat.Prime
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Distrib.toAdd
β€”add_pow_prime_eq
add_right_comm
add_assoc
add_sub_assoc
add_sub_cancel_right
dvd_add
Distrib.leftDistribClass
Dvd.dvd.trans
dvd_mul_right

(root)

Definitions

NameCategoryTheorems
frobenius πŸ“–CompOp
64 mathmath: Perfection.pthRoot_frobenius, frobeniusEquiv_apply, coe_frobeniusEquiv_symm_comp_coe_frobenius, PerfectClosure.mk_mul_mk, frobenius_one, frobenius_natCast, PerfectClosure.frobenius_mk, Polynomial.Monic.eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, frobeniusEquiv_symm_comp_frobenius, MonoidHom.map_iterate_frobenius, RingHom.frobenius_comm, MvPolynomial.map_frobenius_expand, injective_frobenius, MvPolynomial.expand_char, frobenius_mul, PerfectRing.bijective_frobenius, minpoly.frobenius_of_isSeparable, Polynomial.roots_expand_map_frobenius, Polynomial.roots_expand_image_frobenius, PerfectClosure.mk_add_mk, MonoidHom.iterate_map_frobenius, frobenius_sub, WittVector.frobenius_eq_map_frobenius, frobenius_zero, RingHom.map_iterate_frobenius, PreTilt.coeff_frobenius, Polynomial.roots_expand_image_frobenius_subset, Perfection.coeff_iterate_frobenius, coe_frobeniusEquiv, frobenius_comp_frobeniusEquiv_symm, coe_frobenius_comp_coe_frobeniusEquiv_symm, MvPolynomial.frobenius_zmod, frobenius_neg, RingHom.iterate_map_frobenius, coe_iterateFrobenius, iterate_frobenius, frobenius_def, surjective_frobenius, bijective_frobenius, PerfectClosure.mk_eq_iff, PerfectClosure.r_iff, ZMod.frobenius_zmod, iterateFrobenius_one, frobenius_apply_frobeniusEquiv_symm, MvPowerSeries.map_frobenius_expand, PreTilt.coeff_iterate_frobenius, Polynomial.Monic.eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible, LinearMap.frobenius_def, FiniteField.frobenius_pow, Polynomial.expand_char, iterateFrobenius_eq_pow, Polynomial.map_frobenius_expand, PerfectClosure.iterate_frobenius_mk, PerfectClosure.eq_iff, MonoidHom.map_frobenius, frobenius_add, Perfection.coeff_iterate_frobenius', RingHom.map_frobenius, Polynomial.roots_expand_map_frobenius_le, Perfection.frobenius_pthRoot, PreTilt.coeff_iterate_frobenius', frobeniusEquiv_symm_apply_frobenius, Perfection.coeff_frobenius, frobenius_inj
iterateFrobenius πŸ“–CompOp
32 mathmath: coe_iterateFrobenius_mul, bijective_iterateFrobenius, iterateFrobenius_one_apply, LinearMap.iterateFrobenius_def, iterateFrobenius_inj, MvPolynomial.map_expand_pow_char, iterateFrobenius_zero, iterateFrobenius_def, Polynomial.roots_expand_pow_map_iterateFrobenius_le, iterateFrobenius_add, coe_iterateFrobenius, RingHom.map_iterateFrobenius, Polynomial.roots_expand_pow_map_iterateFrobenius, Polynomial.map_expand_pow_char, MvPowerSeries.map_iterateFrobenius_expand, iterateFrobeniusEquiv_apply, MonoidHom.map_iterateFrobenius, MvPolynomial.map_iterateFrobenius_expand, iterateFrobenius_one, Polynomial.roots_expand_image_iterateFrobenius, Polynomial.roots_expand_pow_image_iterateFrobenius_subset, iterateFrobenius_eq_pow, IsPurelyInseparable.iterateFrobeniusβ‚›β‚—_algebraMap, IsPurelyInseparable.iterateFrobeniusβ‚›β‚—_algebraMap_base, minpoly.iterateFrobenius_of_isSeparable, iterateFrobenius_add_apply, coe_iterateFrobeniusEquiv, RingHom.iterateFrobenius_comm, iterateFrobenius_zero_apply, iterateFrobenius_mul_apply, IsPurelyInseparable.algebraMap_iterateFrobeniusβ‚›β‚—, Polynomial.map_iterateFrobenius_expand

Theorems

NameKindAssumesProvesValidatesDepends On
add_pow_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”add_pow_expChar
expChar_prime
add_pow_char_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
β€”add_pow_expChar_of_commute
expChar_prime
add_pow_char_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instMonoid
β€”add_pow_expChar_pow
expChar_prime
add_pow_char_pow_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
Nat.instMonoid
β€”add_pow_expChar_pow_of_commute
expChar_prime
add_pow_eq_mul_pow_add_pow_div_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
β€”add_pow_eq_mul_pow_add_pow_div_expChar
expChar_prime
add_pow_eq_mul_pow_add_pow_div_char_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
β€”add_pow_eq_mul_pow_add_pow_div_expChar_of_commute
expChar_prime
add_pow_eq_mul_pow_add_pow_div_expChar πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
β€”add_pow_eq_mul_pow_add_pow_div_expChar_of_commute
Commute.all
add_pow_eq_mul_pow_add_pow_div_expChar_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
β€”add_pow_expChar_of_commute
pow_mul
pow_add
add_pow_expChar πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”add_pow_expChar_of_commute
Commute.all
add_pow_expChar_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
β€”pow_one
Commute.exists_add_pow_prime_eq
CharP.cast_eq_zero
MulZeroClass.zero_mul
add_zero
add_pow_expChar_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instMonoid
β€”add_pow_expChar_pow_of_commute
Commute.all
add_pow_expChar_pow_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
Nat.instMonoid
β€”one_pow
pow_one
Commute.exists_add_pow_prime_pow_eq
CharP.cast_eq_zero
MulZeroClass.zero_mul
add_zero
add_pow_prime_eq πŸ“–mathematicalNat.PrimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”Commute.add_pow_prime_eq
Commute.all
add_pow_prime_eq' πŸ“–mathematicalNat.PrimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”Commute.add_pow_prime_eq'
Commute.all
add_pow_prime_pow_eq πŸ“–mathematicalNat.PrimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instMonoid
Distrib.toMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”Commute.add_pow_prime_pow_eq
Commute.all
add_pow_prime_pow_eq' πŸ“–mathematicalNat.PrimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instMonoid
Distrib.toMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
Nat.choose
β€”Commute.add_pow_prime_pow_eq'
Commute.all
exists_add_pow_prime_eq πŸ“–mathematicalNat.PrimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Commute.exists_add_pow_prime_eq
Commute.all
exists_add_pow_prime_pow_eq πŸ“–mathematicalNat.PrimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instMonoid
Distrib.toMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Commute.exists_add_pow_prime_pow_eq
Commute.all
list_sum_pow_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”map_list_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
list_sum_pow_char_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Nat.instMonoid
β€”map_list_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
multiset_sum_pow_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Multiset.map
β€”map_multiset_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
multiset_sum_pow_char_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instMonoid
Multiset.map
β€”map_multiset_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
neg_one_pow_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”neg_one_pow_expChar
expChar_prime
neg_one_pow_char_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instMonoid
β€”neg_one_pow_expChar_pow
expChar_prime
neg_one_pow_expChar πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”eq_neg_iff_add_eq_zero
one_pow
add_pow_expChar_of_commute
Commute.one_right
neg_add_cancel
zero_pow
expChar_ne_zero
neg_one_pow_expChar_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instMonoid
β€”eq_neg_iff_add_eq_zero
one_pow
add_pow_expChar_pow_of_commute
Commute.one_right
neg_add_cancel
zero_pow
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
expChar_ne_zero
sub_pow_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”sub_pow_expChar
expChar_prime
sub_pow_char_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”sub_pow_expChar_of_commute
expChar_prime
sub_pow_char_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instMonoid
β€”sub_pow_expChar_pow
expChar_prime
sub_pow_char_pow_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Nat.instMonoid
β€”sub_pow_expChar_pow_of_commute
expChar_prime
sub_pow_eq_mul_pow_sub_pow_div_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”sub_pow_eq_mul_pow_sub_pow_div_expChar
expChar_prime
sub_pow_eq_mul_pow_sub_pow_div_char_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”sub_pow_eq_mul_pow_sub_pow_div_expChar_of_commute
expChar_prime
sub_pow_eq_mul_pow_sub_pow_div_expChar πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”sub_pow_eq_mul_pow_sub_pow_div_expChar_of_commute
Commute.all
sub_pow_eq_mul_pow_sub_pow_div_expChar_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”sub_pow_expChar_of_commute
pow_mul
pow_add
sub_pow_expChar πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”sub_pow_expChar_of_commute
Commute.all
sub_pow_expChar_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”add_pow_expChar_of_commute
Commute.sub_left
sub_add_cancel
sub_pow_expChar_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instMonoid
β€”sub_pow_expChar_pow_of_commute
Commute.all
sub_pow_expChar_pow_of_commute πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Nat.instMonoid
β€”add_pow_expChar_pow_of_commute
Commute.sub_left
sub_add_cancel
sum_pow_char πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sum_pow_char_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.instMonoid
β€”map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass

---

← Back to Index