Documentation Verification Report

LocalRing

📁 Source: Mathlib/Algebra/CharP/LocalRing.lean

Statistics

MetricCount
Definitions0
TheoremscharP_zero_or_prime_power
1
Total1

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
charP_zero_or_prime_power 📖mathematicalIsPrimePow
Nat.instCommMonoidWithZero
CharP.char_is_prime_or_zero
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
ringChar.charP
Nat.ordProj_dvd
Nat.not_dvd_ordCompl
Ideal.instIsTwoSided_1
Ideal.Quotient.eq_zero_iff_mem
IsLocalRing.mem_maximalIdeal
mem_nonunits_iff
ringChar.spec
map_natCast
RingHom.instRingHomClass
one_mul
IsUnit.val_inv_mul
mul_assoc
Nat.cast_mul
mul_comm
CharP.cast_eq_zero
MulZeroClass.mul_zero
CharP.cast_eq_zero_iff
pow_zero
CharP.char_ne_one
Nat.Prime.prime
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
CharP.eq
CharP.ofCharZero
RingHom.charZero
CharP.charP_to_charZero
ringChar.of_eq

---

← Back to Index