Documentation Verification Report

MixedCharZero

πŸ“ Source: Mathlib/Algebra/CharP/MixedCharZero.lean

Statistics

MetricCount
DefinitionsalgebraRat, coePNatUnits, pnatCast, MixedCharZero
4
TheoremsisUnit_natCast, iff_not_mixedCharZero, nonempty_algebraRat_iff, of_algebraRat, of_not_mixedCharZero, pnatCast_eq_natCast, pnatCast_one, to_not_mixedCharZero, charP_quotient, reduce_to_maximal_ideal, reduce_to_p_prime, toCharZero, isEmpty_algebraRat_iff_mixedCharZero, split_by_characteristic, split_by_characteristic_domain, split_by_characteristic_localRing, split_equalCharZero_mixedCharZero
17
Total21

EqualCharZero

Definitions

NameCategoryTheorems
algebraRat πŸ“–CompOpβ€”
coePNatUnits πŸ“–CompOpβ€”
pnatCast πŸ“–CompOp
2 mathmath: pnatCast_eq_natCast, pnatCast_one

Theorems

NameKindAssumesProvesValidatesDepends On
iff_not_mixedCharZero πŸ“–mathematicalβ€”CharZero
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
MixedCharZero
β€”to_not_mixedCharZero
of_not_mixedCharZero
nonempty_algebraRat_iff πŸ“–mathematicalβ€”Algebra
Rat.commSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CharZero
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
β€”of_algebraRat
of_algebraRat πŸ“–mathematicalβ€”CharZero
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Ideal.eq_top_of_isUnit_mem
Ideal.instIsTwoSided_1
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_natCast
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Nat.cast_injective
Rat.instCharZero
of_not_mixedCharZero πŸ“–mathematicalMixedCharZeroCharZero
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
β€”CharP.exists
CharP.charP_to_charZero
pnatCast_eq_natCast πŸ“–mathematicalβ€”Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
pnatCast
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
PNat.val
β€”β€”
pnatCast_one πŸ“–mathematicalβ€”pnatCast
PNat
instOfNatPNatOfNeZeroNat
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instOne
β€”Units.ext
Units.val_one
PNat.isUnit_natCast
IsUnit.unit_spec
PNat.one_coe
Nat.cast_one
to_not_mixedCharZero πŸ“–mathematicalCharZero
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
MixedCharZeroβ€”MixedCharZero.charP_quotient
CharP.ofCharZero
CharP.eq
ne_of_gt

EqualCharZero.PNat

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_natCast πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
PNat.val
β€”Ideal.span_singleton_eq_top
not_imp_comm
Fact.elim
CharZero.cast_injective
PNat.ne_zero
Ideal.instIsTwoSided_1
map_natCast
RingHom.instRingHomClass
Nat.cast_zero
Ideal.Quotient.eq_zero_iff_mem
Ideal.subset_span
Set.mem_singleton

MixedCharZero

Theorems

NameKindAssumesProvesValidatesDepends On
charP_quotient πŸ“–mathematicalβ€”CharP
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
β€”β€”
reduce_to_maximal_ideal πŸ“–mathematicalNat.PrimeCharP
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ideal.Quotient.instRingQuotient
Ideal.IsMaximal
β€”Ideal.exists_le_maximal
CharP.exists
CharP.cast_eq_zero_iff
Ideal.instIsTwoSided_1
CharP.cast_eq_zero
Nat.Prime.eq_one_or_self_of_dvd
CharP.char_ne_one
IsDomain.toNontrivial
Ideal.Quotient.isDomain
Ideal.IsMaximal.isPrime'
Ideal.IsMaximal.ne_top
reduce_to_p_prime πŸ“–β€”β€”β€”β€”Nat.Prime.pos
charP_quotient
Ideal.exists_le_maximal
Ideal.instIsTwoSided_1
CharP.cast_eq_zero
ne_zero_of_dvd_ne_zero
ne_of_gt
CharP.cast_eq_zero_iff
ringChar.charP
map_natCast
RingHom.instRingHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
CharP.char_is_prime_or_zero
Ideal.Quotient.noZeroDivisors
Ideal.IsMaximal.isPrime'
IsDomain.toNontrivial
Ideal.Quotient.isDomain
toCharZero
Ideal.IsMaximal.ne_top
ringChar.of_eq
toCharZero πŸ“–mathematicalβ€”CharZero
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”

(root)

Definitions

NameCategoryTheorems
MixedCharZero πŸ“–CompData
3 mathmath: EqualCharZero.to_not_mixedCharZero, isEmpty_algebraRat_iff_mixedCharZero, EqualCharZero.iff_not_mixedCharZero

Theorems

NameKindAssumesProvesValidatesDepends On
isEmpty_algebraRat_iff_mixedCharZero πŸ“–mathematicalβ€”IsEmpty
Algebra
Rat.commSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MixedCharZero
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_and_eq
EqualCharZero.iff_not_mixedCharZero
EqualCharZero.nonempty_algebraRat_iff
split_by_characteristic πŸ“–β€”β€”β€”β€”CharP.exists
split_equalCharZero_mixedCharZero
CharP.charP_to_charZero
split_by_characteristic_domain πŸ“–β€”β€”β€”β€”split_by_characteristic
CharP.char_is_prime_or_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
split_by_characteristic_localRing πŸ“–β€”β€”β€”β€”split_by_characteristic
charP_zero_or_prime_power
split_equalCharZero_mixedCharZero πŸ“–β€”β€”β€”β€”MixedCharZero.reduce_to_p_prime
not_isEmpty_iff
isEmpty_algebraRat_iff_mixedCharZero

---

← Back to Index