Documentation Verification Report

DirectLimit

πŸ“ Source: Mathlib/Algebra/Colimit/DirectLimit.lean

Statistics

MetricCount
Definitionsof, of, instAdd, instAddActionOfAddActionHomClass, instAddCommGroupOfAddMonoidHomClass, instAddCommGroupWithOneOfAddMonoidHomClass, instAddCommMagmaOfAddHomClass, instAddCommMonoidOfAddMonoidHomClass, instAddCommMonoidWithOneOfAddMonoidHomClass, instAddCommSemigroupOfAddHomClass, instAddGroup, instAddGroupWithOne, instAddMonoid, instAddMonoidWithOne, instAddSemigroupOfAddHomClass, instAddZeroClassOfAddMonoidHomClass, instCommGroupOfMonoidHomClass, instCommGroupWithZeroOfMonoidWithZeroHomClass, instCommMagmaOfMulHomClass, instCommMonoidOfMonoidHomClass, instCommMonoidWithZeroOfMonoidWithZeroHomClass, instCommRingOfRingHomClass, instCommSemigroupOfMulHomClass, instCommSemiringOfRingHomClass, instDistribMulAction, instDistribSMulOfMulActionHomClass, instDivisionRing, instDivisionSemiring, instFieldOfRingHomClass, instGroup, instGroupWithZero, instModule, instMonoid, instMonoidWithZeroOfMonoidWithZeroHomClass, instMul, instMulActionOfMulActionHomClass, instMulDistribMulActionOfMulActionHomClass, instMulOneClassOfMonoidHomClass, instMulZeroClassOfMulHomClassOfZeroHomClass, instMulZeroOneClass, instNonAssocCommRingOfRingHomClass, instNonAssocCommSemiringOfRingHomClass, instNonAssocRingOfRingHomClass, instNonAssocSemiringOfRingHomClass, instNonUnitalCommRingOfNonUnitalRingHomClass, instNonUnitalCommSemiringOfNonUnitalRingHomClass, instNonUnitalNonAssocCommRingOfNonUnitalRingHomClass, instNonUnitalNonAssocCommSemiringOfNonUnitalRingHomClass, instNonUnitalNonAssocRingOfNonUnitalRingHomClass, instNonUnitalNonAssocSemiringOfNonUnitalRingHomClass, instNonUnitalRingOfNonUnitalRingHomClass, instNonUnitalSemiringOfNonUnitalRingHomClass, instOne, instRingOfRingHomClass, instSMul, instSMulWithZeroOfMulActionHomClassOfZeroHomClass, instSMulZeroClassOfMulActionHomClass, instSemifieldOfRingHomClass, instSemigroupOfMulHomClass, instSemigroupWithZeroOfMulHomClassOfZeroHomClass, instSemiringOfRingHomClass, instVAdd, instZero
63
Theoremshom_ext, hom_ext_iff, lift_apply, lift_of, of_f, hom_ext, hom_ext_iff, lift_of, of_f, add_def, div_def, divβ‚€_def, exists_eq_one, exists_eq_zero, instNontrivial, intCast_def, inv_def, invβ‚€_def, mul_def, natCast_def, neg_def, nnratCast_def, npow_def, nsmul_def, one_def, ratCast_def, smul_def, sub_def, vadd_def, zero_def, zpow_def, zpowβ‚€_def, zsmul_def
33
Total96

DirectLimit

Definitions

NameCategoryTheorems
instAdd πŸ“–CompOp
3 mathmath: add_def, Ring.DirectLimit.ringEquiv_of, Ring.DirectLimit.ringEquiv_symm_mk
instAddActionOfAddActionHomClass πŸ“–CompOpβ€”
instAddCommGroupOfAddMonoidHomClass πŸ“–CompOpβ€”
instAddCommGroupWithOneOfAddMonoidHomClass πŸ“–CompOpβ€”
instAddCommMagmaOfAddHomClass πŸ“–CompOpβ€”
instAddCommMonoidOfAddMonoidHomClass πŸ“–CompOp
6 mathmath: Module.of_f, Module.lift_of, Module.DirectLimit.linearEquiv_of, Module.DirectLimit.linearEquiv_symm_mk, Module.hom_ext_iff, Module.lift_apply
instAddCommMonoidWithOneOfAddMonoidHomClass πŸ“–CompOpβ€”
instAddCommSemigroupOfAddHomClass πŸ“–CompOpβ€”
instAddGroup πŸ“–CompOp
3 mathmath: zsmul_def, neg_def, sub_def
instAddGroupWithOne πŸ“–CompOp
1 mathmath: intCast_def
instAddMonoid πŸ“–CompOp
1 mathmath: nsmul_def
instAddMonoidWithOne πŸ“–CompOp
1 mathmath: natCast_def
instAddSemigroupOfAddHomClass πŸ“–CompOpβ€”
instAddZeroClassOfAddMonoidHomClass πŸ“–CompOpβ€”
instCommGroupOfMonoidHomClass πŸ“–CompOpβ€”
instCommGroupWithZeroOfMonoidWithZeroHomClass πŸ“–CompOpβ€”
instCommMagmaOfMulHomClass πŸ“–CompOpβ€”
instCommMonoidOfMonoidHomClass πŸ“–CompOpβ€”
instCommMonoidWithZeroOfMonoidWithZeroHomClass πŸ“–CompOpβ€”
instCommRingOfRingHomClass πŸ“–CompOpβ€”
instCommSemigroupOfMulHomClass πŸ“–CompOpβ€”
instCommSemiringOfRingHomClass πŸ“–CompOpβ€”
instDistribMulAction πŸ“–CompOpβ€”
instDistribSMulOfMulActionHomClass πŸ“–CompOpβ€”
instDivisionRing πŸ“–CompOp
1 mathmath: ratCast_def
instDivisionSemiring πŸ“–CompOp
1 mathmath: nnratCast_def
instFieldOfRingHomClass πŸ“–CompOpβ€”
instGroup πŸ“–CompOp
3 mathmath: zpow_def, inv_def, div_def
instGroupWithZero πŸ“–CompOp
3 mathmath: zpowβ‚€_def, invβ‚€_def, divβ‚€_def
instModule πŸ“–CompOp
6 mathmath: Module.of_f, Module.lift_of, Module.DirectLimit.linearEquiv_of, Module.DirectLimit.linearEquiv_symm_mk, Module.hom_ext_iff, Module.lift_apply
instMonoid πŸ“–CompOp
1 mathmath: npow_def
instMonoidWithZeroOfMonoidWithZeroHomClass πŸ“–CompOpβ€”
instMul πŸ“–CompOp
3 mathmath: mul_def, Ring.DirectLimit.ringEquiv_of, Ring.DirectLimit.ringEquiv_symm_mk
instMulActionOfMulActionHomClass πŸ“–CompOpβ€”
instMulDistribMulActionOfMulActionHomClass πŸ“–CompOpβ€”
instMulOneClassOfMonoidHomClass πŸ“–CompOpβ€”
instMulZeroClassOfMulHomClassOfZeroHomClass πŸ“–CompOpβ€”
instMulZeroOneClass πŸ“–CompOpβ€”
instNonAssocCommRingOfRingHomClass πŸ“–CompOpβ€”
instNonAssocCommSemiringOfRingHomClass πŸ“–CompOpβ€”
instNonAssocRingOfRingHomClass πŸ“–CompOpβ€”
instNonAssocSemiringOfRingHomClass πŸ“–CompOp
3 mathmath: Ring.of_f, Ring.hom_ext_iff, Ring.lift_of
instNonUnitalCommRingOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalCommSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalNonAssocCommRingOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalNonAssocCommSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalNonAssocRingOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalNonAssocSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalRingOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instOne πŸ“–CompOp
2 mathmath: exists_eq_one, one_def
instRingOfRingHomClass πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
1 mathmath: smul_def
instSMulWithZeroOfMulActionHomClassOfZeroHomClass πŸ“–CompOpβ€”
instSMulZeroClassOfMulActionHomClass πŸ“–CompOpβ€”
instSemifieldOfRingHomClass πŸ“–CompOpβ€”
instSemigroupOfMulHomClass πŸ“–CompOpβ€”
instSemigroupWithZeroOfMulHomClassOfZeroHomClass πŸ“–CompOpβ€”
instSemiringOfRingHomClass πŸ“–CompOpβ€”
instVAdd πŸ“–CompOp
1 mathmath: vadd_def
instZero πŸ“–CompOp
2 mathmath: exists_eq_zero, zero_def

Theorems

NameKindAssumesProvesValidatesDepends On
add_def πŸ“–mathematicalAddHomClasssetoid
instAdd
β€”mapβ‚‚_def
div_def πŸ“–mathematicalMonoidHomClass
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
setoid
DivInvMonoid.toDiv
instGroup
β€”mapβ‚‚_def
divβ‚€_def πŸ“–mathematicalMonoidWithZeroHomClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
setoid
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
instGroupWithZero
β€”mapβ‚‚_def
exists_eq_one πŸ“–mathematicalOneHomClasssetoid
DirectLimit
instOne
DFunLike.coe
β€”one_def
Quotient.eq
map_one
exists_eq_zero πŸ“–mathematicalZeroHomClasssetoid
DirectLimit
instZero
DFunLike.coe
β€”zero_def
Quotient.eq
map_zero
instNontrivial πŸ“–mathematicalMonoidWithZeroHomClass
Nontrivial
DirectLimitβ€”Quotient.eq
map_zero
MonoidWithZeroHomClass.toZeroHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
NeZero.one
intCast_def πŸ“–mathematicalAddMonoidHomClass
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
OneHomClass
AddMonoidWithOne.toOne
DirectLimit
AddGroupWithOne.toIntCast
instAddGroupWithOne
setoid
β€”mapβ‚€_def
map_intCast'
map_one
inv_def πŸ“–mathematicalMonoidHomClass
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
setoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
β€”β€”
invβ‚€_def πŸ“–mathematicalMonoidWithZeroHomClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
setoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
instGroupWithZero
β€”β€”
mul_def πŸ“–mathematicalMulHomClasssetoid
instMul
β€”mapβ‚‚_def
natCast_def πŸ“–mathematicalAddMonoidHomClass
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
OneHomClass
AddMonoidWithOne.toOne
DirectLimit
AddMonoidWithOne.toNatCast
instAddMonoidWithOne
setoid
β€”mapβ‚€_def
map_natCast'
map_one
neg_def πŸ“–mathematicalAddMonoidHomClass
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
setoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instAddGroup
β€”β€”
nnratCast_def πŸ“–mathematicalRingHomClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
NNRat.cast
DirectLimit
DivisionSemiring.toNNRatCast
instDivisionSemiring
setoid
β€”mapβ‚€_def
map_nnratCast
npow_def πŸ“–mathematicalMonoidHomClass
MulOneClass.toMulOne
Monoid.toMulOneClass
setoid
Monoid.toNatPow
instMonoid
β€”β€”
nsmul_def πŸ“–mathematicalAddMonoidHomClass
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
setoid
AddMonoid.toNatSMul
instAddMonoid
β€”β€”
one_def πŸ“–mathematicalOneHomClassDirectLimit
instOne
setoid
β€”mapβ‚€_def
map_one
ratCast_def πŸ“–mathematicalRingHomClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
DirectLimit
DivisionRing.toRatCast
instDivisionRing
setoid
β€”mapβ‚€_def
map_ratCast
smul_def πŸ“–mathematicalMulActionHomClasssetoid
instSMul
β€”β€”
sub_def πŸ“–mathematicalAddMonoidHomClass
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
setoid
SubNegMonoid.toSub
instAddGroup
β€”mapβ‚‚_def
vadd_def πŸ“–mathematicalAddActionHomClassHVAdd.hVAdd
setoid
instHVAdd
instVAdd
β€”β€”
zero_def πŸ“–mathematicalZeroHomClassDirectLimit
instZero
setoid
β€”mapβ‚€_def
map_zero
zpow_def πŸ“–mathematicalMonoidHomClass
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
setoid
DivInvMonoid.toZPow
instGroup
β€”β€”
zpowβ‚€_def πŸ“–mathematicalMonoidWithZeroHomClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
setoid
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
instGroupWithZero
β€”β€”
zsmul_def πŸ“–mathematicalAddMonoidHomClass
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
setoid
SubNegMonoid.toZSMul
instAddGroup
β€”β€”

DirectLimit.Module

Definitions

NameCategoryTheorems
of πŸ“–CompOp
3 mathmath: of_f, lift_of, hom_ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”LinearMapClass
LinearMap.comp
DirectLimit
DirectLimit.instAddCommMonoidOfAddMonoidHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
DirectLimit.instModule
RingHomCompTriple.ids
of
β€”β€”DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
RingHomCompTriple.ids
LinearMap.ext
DirectLimit.induction
hom_ext_iff πŸ“–mathematicalLinearMapClassLinearMap.comp
DirectLimit
DirectLimit.instAddCommMonoidOfAddMonoidHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
DirectLimit.instModule
RingHomCompTriple.ids
of
β€”DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
RingHomCompTriple.ids
hom_ext
lift_apply πŸ“–mathematicalLinearMapClass
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
DirectLimit
DirectLimit.instAddCommMonoidOfAddMonoidHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
RingHom
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
DirectLimit.instModule
lift
DirectLimit.lift
β€”DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
lift_of πŸ“–mathematicalLinearMapClass
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
DirectLimit
DirectLimit.instAddCommMonoidOfAddMonoidHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
RingHom
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
DirectLimit.instModule
lift
of
β€”DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
of_f πŸ“–mathematicalLinearMapClass
Preorder.toLE
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
DirectLimit
DirectLimit.instAddCommMonoidOfAddMonoidHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
RingHom
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
DirectLimit.instModule
LinearMap.instFunLike
of
β€”DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
DirectLimit.eq_of_le

DirectLimit.Ring

Definitions

NameCategoryTheorems
of πŸ“–CompOp
3 mathmath: of_f, hom_ext_iff, lift_of

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”RingHomClass
RingHom.comp
DirectLimit
DirectLimit.instNonAssocSemiringOfRingHomClass
of
β€”β€”RingHom.ext
DirectLimit.induction
hom_ext_iff πŸ“–mathematicalRingHomClassRingHom.comp
DirectLimit
DirectLimit.instNonAssocSemiringOfRingHomClass
of
β€”hom_ext
lift_of πŸ“–mathematicalRingHomClass
DFunLike.coe
RingHom
RingHom.instFunLike
DirectLimit
DirectLimit.instNonAssocSemiringOfRingHomClass
lift
of
β€”β€”
of_f πŸ“–mathematicalRingHomClass
Preorder.toLE
DFunLike.coe
RingHom
DirectLimit
DirectLimit.instNonAssocSemiringOfRingHomClass
RingHom.instFunLike
of
β€”DirectLimit.eq_of_le

---

← Back to Index