| Name | Category | Theorems |
instAdd π | CompOp | 3 mathmath: add_def, Ring.DirectLimit.ringEquiv_of, Ring.DirectLimit.ringEquiv_symm_mk
|
instAddActionOfAddActionHomClass π | CompOp | β |
instAddCommGroupOfAddMonoidHomClass π | CompOp | β |
instAddCommGroupWithOneOfAddMonoidHomClass π | CompOp | β |
instAddCommMagmaOfAddHomClass π | CompOp | β |
instAddCommMonoidOfAddMonoidHomClass π | CompOp | 6 mathmath: Module.of_f, Module.lift_of, Module.DirectLimit.linearEquiv_of, Module.DirectLimit.linearEquiv_symm_mk, Module.hom_ext_iff, Module.lift_apply
|
instAddCommMonoidWithOneOfAddMonoidHomClass π | CompOp | β |
instAddCommSemigroupOfAddHomClass π | CompOp | β |
instAddGroup π | CompOp | 3 mathmath: zsmul_def, neg_def, sub_def
|
instAddGroupWithOne π | CompOp | 1 mathmath: intCast_def
|
instAddMonoid π | CompOp | 1 mathmath: nsmul_def
|
instAddMonoidWithOne π | CompOp | 1 mathmath: natCast_def
|
instAddSemigroupOfAddHomClass π | CompOp | β |
instAddZeroClassOfAddMonoidHomClass π | CompOp | β |
instCommGroupOfMonoidHomClass π | CompOp | β |
instCommGroupWithZeroOfMonoidWithZeroHomClass π | CompOp | β |
instCommMagmaOfMulHomClass π | CompOp | β |
instCommMonoidOfMonoidHomClass π | CompOp | β |
instCommMonoidWithZeroOfMonoidWithZeroHomClass π | CompOp | β |
instCommRingOfRingHomClass π | CompOp | β |
instCommSemigroupOfMulHomClass π | CompOp | β |
instCommSemiringOfRingHomClass π | CompOp | β |
instDistribMulAction π | CompOp | β |
instDistribSMulOfMulActionHomClass π | CompOp | β |
instDivisionRing π | CompOp | 1 mathmath: ratCast_def
|
instDivisionSemiring π | CompOp | 1 mathmath: nnratCast_def
|
instFieldOfRingHomClass π | CompOp | β |
instGroup π | CompOp | 3 mathmath: zpow_def, inv_def, div_def
|
instGroupWithZero π | CompOp | 3 mathmath: zpowβ_def, invβ_def, divβ_def
|
instModule π | CompOp | 6 mathmath: Module.of_f, Module.lift_of, Module.DirectLimit.linearEquiv_of, Module.DirectLimit.linearEquiv_symm_mk, Module.hom_ext_iff, Module.lift_apply
|
instMonoid π | CompOp | 1 mathmath: npow_def
|
instMonoidWithZeroOfMonoidWithZeroHomClass π | CompOp | β |
instMul π | CompOp | 3 mathmath: mul_def, Ring.DirectLimit.ringEquiv_of, Ring.DirectLimit.ringEquiv_symm_mk
|
instMulActionOfMulActionHomClass π | CompOp | β |
instMulDistribMulActionOfMulActionHomClass π | CompOp | β |
instMulOneClassOfMonoidHomClass π | CompOp | β |
instMulZeroClassOfMulHomClassOfZeroHomClass π | CompOp | β |
instMulZeroOneClass π | CompOp | β |
instNonAssocCommRingOfRingHomClass π | CompOp | β |
instNonAssocCommSemiringOfRingHomClass π | CompOp | β |
instNonAssocRingOfRingHomClass π | CompOp | β |
instNonAssocSemiringOfRingHomClass π | CompOp | 3 mathmath: Ring.of_f, Ring.hom_ext_iff, Ring.lift_of
|
instNonUnitalCommRingOfNonUnitalRingHomClass π | CompOp | β |
instNonUnitalCommSemiringOfNonUnitalRingHomClass π | CompOp | β |
instNonUnitalNonAssocCommRingOfNonUnitalRingHomClass π | CompOp | β |
instNonUnitalNonAssocCommSemiringOfNonUnitalRingHomClass π | CompOp | β |
instNonUnitalNonAssocRingOfNonUnitalRingHomClass π | CompOp | β |
instNonUnitalNonAssocSemiringOfNonUnitalRingHomClass π | CompOp | β |
instNonUnitalRingOfNonUnitalRingHomClass π | CompOp | β |
instNonUnitalSemiringOfNonUnitalRingHomClass π | CompOp | β |
instOne π | CompOp | 2 mathmath: exists_eq_one, one_def
|
instRingOfRingHomClass π | CompOp | β |
instSMul π | CompOp | 1 mathmath: smul_def
|
instSMulWithZeroOfMulActionHomClassOfZeroHomClass π | CompOp | β |
instSMulZeroClassOfMulActionHomClass π | CompOp | β |
instSemifieldOfRingHomClass π | CompOp | β |
instSemigroupOfMulHomClass π | CompOp | β |
instSemigroupWithZeroOfMulHomClassOfZeroHomClass π | CompOp | β |
instSemiringOfRingHomClass π | CompOp | β |
instVAdd π | CompOp | 1 mathmath: vadd_def
|
instZero π | CompOp | 2 mathmath: exists_eq_zero, zero_def
|