Documentation Verification Report

Module

πŸ“ Source: Mathlib/Algebra/Colimit/Module.lean

Statistics

MetricCount
DefinitionsaddCommGroup, instAddCommMonoid, instInhabited, instUniqueOfIsEmpty, map, of, Eqv, addCommGroup, addCommMonoid, inhabited, linearEquiv, map, moduleCon, of, unique
15
Theoremscongr_apply_of, congr_symm_apply_of, directedSystem, hom_ext, hom_ext_iff, induction_on, lift_comp_of, lift_injective, lift_of, lift_of', map_apply_of, map_comp, map_id, zero_exact, of_f, congr_apply_of, congr_symm_apply_of, exists_eq_of_of_eq, exists_of, exists_ofβ‚‚, hom_ext, hom_ext_iff, induction_on, lift_comp_of, lift_injective, lift_of, lift_of', linearEquiv_of, linearEquiv_symm_mk, map_apply_of, map_comp, map_id, zero_exact, of_f, quotMk_of, map_map, map_self
37
Total52

AddCommGroup.DirectLimit

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOp
11 mathmath: lift_of', of_f, congr_apply_of, congr_symm_apply_of, lift_comp_of, lift_of, lift_injective, map_id, map_comp, hom_ext_iff, map_apply_of
instInhabited πŸ“–CompOpβ€”
instUniqueOfIsEmpty πŸ“–CompOpβ€”
map πŸ“–CompOp
3 mathmath: map_id, map_comp, map_apply_of
of πŸ“–CompOp
8 mathmath: lift_of', of_f, congr_apply_of, congr_symm_apply_of, lift_comp_of, lift_of, hom_ext_iff, map_apply_of

Theorems

NameKindAssumesProvesValidatesDepends On
congr_apply_of πŸ“–mathematicalAddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddEquiv.toAddMonoidHom
AddMonoidHomClass.toAddMonoidHom
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
DFunLike.coe
AddCommGroup.DirectLimit
instAddCommMonoid
congr
AddMonoidHom
AddMonoidHom.instFunLike
of
β€”AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
map_apply_of
congr_symm_apply_of πŸ“–mathematicalAddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddEquiv.toAddMonoidHom
AddMonoidHomClass.toAddMonoidHom
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
DFunLike.coe
AddCommGroup.DirectLimit
instAddCommMonoid
AddEquiv.symm
congr
AddMonoidHom
AddMonoidHom.instFunLike
of
β€”AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
map_apply_of
directedSystem πŸ“–mathematicalβ€”DirectedSystem
DFunLike.coe
LinearMap
Nat.instSemiring
RingHom.id
Nat.instNonAssocSemiring
AddCommMonoid.toNatModule
LinearMap.instFunLike
AddMonoidHom.toNatLinearMap
β€”β€”
hom_ext πŸ“–β€”AddMonoidHom.comp
AddCommGroup.DirectLimit
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
of
β€”β€”AddCon.hom_ext
DirectSum.addHom_ext'
hom_ext_iff πŸ“–mathematicalβ€”AddMonoidHom.comp
AddCommGroup.DirectLimit
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
of
β€”hom_ext
induction_on πŸ“–β€”DFunLike.coe
AddMonoidHom
AddCommGroup.DirectLimit
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
AddMonoidHom.instFunLike
of
β€”β€”Module.DirectLimit.induction_on
lift_comp_of πŸ“–mathematicalβ€”lift
AddMonoidHom.comp
AddCommGroup.DirectLimit
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
of
β€”hom_ext
AddMonoidHom.ext
lift_of
lift_injective πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddCommGroup.DirectLimit
instAddCommMonoid
lift
β€”Module.DirectLimit.lift_injective
lift_of πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddCommGroup.DirectLimit
instAddCommMonoid
lift
of
β€”Module.DirectLimit.lift_of
lift_of' πŸ“–mathematicalβ€”lift
AddCommGroup.DirectLimit
instAddCommMonoid
of
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”hom_ext
AddMonoidHom.ext
lift_of
AddMonoidHom.id_comp
map_apply_of πŸ“–mathematicalAddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddCommGroup.DirectLimit
instAddCommMonoid
AddMonoidHom.instFunLike
map
of
β€”lift_of
map_comp πŸ“–mathematicalAddMonoidHom.comp
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.DirectLimit
instAddCommMonoid
map
β€”hom_ext
AddMonoidHom.ext
map_apply_of
map_id πŸ“–mathematicalβ€”map
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom
AddMonoidHom.comp
AddCommGroup.DirectLimit
instAddCommMonoid
β€”hom_ext
AddMonoidHom.ext
map_apply_of
AddMonoidHom.id_comp
of_f πŸ“–mathematicalPreorder.toLEDFunLike.coe
AddMonoidHom
AddCommGroup.DirectLimit
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
AddMonoidHom.instFunLike
of
β€”Module.DirectLimit.of_f

AddCommGroup.DirectLimit.of

Theorems

NameKindAssumesProvesValidatesDepends On
zero_exact πŸ“–β€”DFunLike.coe
AddMonoidHom
AddCommGroup.DirectLimit
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.DirectLimit.instAddCommMonoid
AddMonoidHom.instFunLike
AddCommGroup.DirectLimit.of
AddZero.toZero
β€”β€”Module.DirectLimit.of.zero_exact
AddCommGroup.DirectLimit.directedSystem

Module.DirectLimit

Definitions

NameCategoryTheorems
Eqv πŸ“–CompDataβ€”
addCommGroup πŸ“–CompOp
3 mathmath: ModuleCat.directLimitIsColimit_desc, ModuleCat.directLimitCocone_pt_isAddCommGroup, ModuleCat.directLimitCocone_ΞΉ_app
addCommMonoid πŸ“–CompOp
28 mathmath: lift_injective, map_apply_of, lift_of, TensorProduct.directLimitRight_tmul_of, quotMk_of, congr_symm_apply_of, map_comp, of_f, Submodule.FG.lTensor.directLimit_apply', linearEquiv_of, Submodule.FG.rTensor.directLimit_apply, TensorProduct.directLimitLeft_rTensor_of, lift_comp_of, congr_apply_of, exists_of, map_id, linearEquiv_symm_mk, lift_of', Submodule.FG.lTensor.directLimit_apply, Module.fgSystem.equiv_comp_of, TensorProduct.directLimitLeft_tmul_of, TensorProduct.directLimitLeft_symm_of_tmul, TensorProduct.fromDirectLimit_of_tmul, TensorProduct.directLimitRight_symm_of_tmul, Submodule.FG.rTensor.directLimit_apply', hom_ext_iff, exists_ofβ‚‚, TensorProduct.toDirectLimit_tmul_of
inhabited πŸ“–CompOpβ€”
linearEquiv πŸ“–CompOp
2 mathmath: linearEquiv_of, linearEquiv_symm_mk
map πŸ“–CompOp
3 mathmath: map_apply_of, map_comp, map_id
moduleCon πŸ“–CompOp
1 mathmath: quotMk_of
of πŸ“–CompOp
26 mathmath: map_apply_of, lift_of, TensorProduct.directLimitRight_tmul_of, quotMk_of, congr_symm_apply_of, of_f, Submodule.FG.lTensor.directLimit_apply', linearEquiv_of, Submodule.FG.rTensor.directLimit_apply, TensorProduct.directLimitLeft_rTensor_of, lift_comp_of, congr_apply_of, exists_of, linearEquiv_symm_mk, lift_of', Submodule.FG.lTensor.directLimit_apply, Module.fgSystem.equiv_comp_of, ModuleCat.directLimitCocone_ΞΉ_app, TensorProduct.directLimitLeft_tmul_of, TensorProduct.directLimitLeft_symm_of_tmul, TensorProduct.fromDirectLimit_of_tmul, TensorProduct.directLimitRight_symm_of_tmul, Submodule.FG.rTensor.directLimit_apply', hom_ext_iff, exists_ofβ‚‚, TensorProduct.toDirectLimit_tmul_of
unique πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
congr_apply_of πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
DFunLike.coe
LinearEquiv
Module.DirectLimit
addCommMonoid
module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
congr
LinearMap
LinearMap.instFunLike
of
β€”RingHomInvPair.ids
RingHomCompTriple.ids
map_apply_of
congr_symm_apply_of πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
DFunLike.coe
LinearEquiv
Module.DirectLimit
addCommMonoid
module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
congr
LinearMap
LinearMap.instFunLike
of
β€”RingHomInvPair.ids
RingHomCompTriple.ids
map_apply_of
LinearEquiv.toLinearMap_symm_comp_eq
LinearMap.comp_assoc
LinearEquiv.comp_coe
RingHomInvPair.triplesβ‚‚
LinearEquiv.symm_trans_self
LinearEquiv.refl_toLinearMap
LinearMap.comp_id
exists_eq_of_of_eq πŸ“–β€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.DirectLimit
addCommMonoid
module
LinearMap.instFunLike
of
β€”β€”RingHomInvPair.ids
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
linearEquiv_of
exists_of πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.DirectLimit
addCommMonoid
module
LinearMap.instFunLike
of
β€”Quotient.inductionOn'
DirectSum.induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
exists_ge_ge
map_add
SemilinearMapClass.toAddHomClass
of_f
exists_ofβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.DirectLimit
addCommMonoid
module
LinearMap.instFunLike
of
β€”exists_of
exists_ge_ge
of_f
hom_ext πŸ“–β€”LinearMap.comp
Module.DirectLimit
addCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
of
β€”β€”RingHomCompTriple.ids
LinearMap.toAddMonoidHom_injective
AddCon.hom_ext
DirectSum.addHom_ext'
hom_ext_iff πŸ“–mathematicalβ€”LinearMap.comp
Module.DirectLimit
addCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
of
β€”RingHomCompTriple.ids
hom_ext
induction_on πŸ“–β€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.DirectLimit
addCommMonoid
module
LinearMap.instFunLike
of
β€”β€”exists_of
lift_comp_of πŸ“–mathematicalβ€”lift
LinearMap.comp
Module.DirectLimit
addCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
of
β€”hom_ext
RingHomCompTriple.ids
LinearMap.ext
lift_of
lift_injective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Module.DirectLimit
addCommMonoid
module
lift
β€”isEmpty_or_nonempty
Function.injective_of_subsingleton
Unique.instSubsingleton
exists_ofβ‚‚
lift_of
lift_of πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Module.DirectLimit
addCommMonoid
module
lift
of
β€”DirectSum.toModule_lof
lift_of' πŸ“–mathematicalβ€”lift
Module.DirectLimit
addCommMonoid
module
of
LinearMap.id
β€”hom_ext
LinearMap.ext
RingHomCompTriple.ids
lift_of
linearEquiv_of πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.DirectLimit
DirectLimit
LinearMap
LinearMap.instFunLike
addCommMonoid
DirectLimit.instAddCommMonoidOfAddMonoidHomClass
module
DirectLimit.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
linearEquiv
of
DirectLimit.setoid
β€”RingHomInvPair.ids
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
lift_of
linearEquiv_symm_mk πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
DirectLimit
LinearMap
LinearMap.instFunLike
Module.DirectLimit
DirectLimit.instAddCommMonoidOfAddMonoidHomClass
addCommMonoid
DirectLimit.instModule
module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
linearEquiv
DirectLimit.setoid
of
β€”RingHomInvPair.ids
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_apply_of πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
LinearMap
Module.DirectLimit
addCommMonoid
module
LinearMap.instFunLike
map
of
β€”RingHomCompTriple.ids
lift_of
map_comp πŸ“–mathematicalLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Module.DirectLimit
addCommMonoid
module
map
β€”RingHomCompTriple.ids
hom_ext
LinearMap.ext
map_apply_of
map_id πŸ“–mathematicalβ€”map
LinearMap.id
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.comp
RingHomCompTriple.ids
Module.DirectLimit
addCommMonoid
module
β€”hom_ext
RingHomCompTriple.ids
LinearMap.ext
map_apply_of
of_f πŸ“–mathematicalPreorder.toLEDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.DirectLimit
addCommMonoid
module
LinearMap.instFunLike
of
β€”AddCon.eq
quotMk_of πŸ“–mathematicalβ€”DirectSum
AddCon.toSetoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidDirectSum
ModuleCon.toAddCon
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DirectSum.instModule
moduleCon
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
DirectSum.of
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.DirectLimit
addCommMonoid
module
LinearMap.instFunLike
of
β€”β€”

Module.DirectLimit.of

Theorems

NameKindAssumesProvesValidatesDepends On
zero_exact πŸ“–β€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Module.DirectLimit
Module.DirectLimit.addCommMonoid
Module.DirectLimit.module
LinearMap.instFunLike
Module.DirectLimit.of
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Module.DirectLimit.exists_eq_of_of_eq

Module.DirectedSystem

Theorems

NameKindAssumesProvesValidatesDepends On
map_map πŸ“–mathematicalPreorder.toLEDFunLike.coe
LE.le.trans
β€”DirectedSystem.map_map'
map_self πŸ“–mathematicalβ€”DFunLike.coe
le_rfl
β€”DirectedSystem.map_self'

---

← Back to Index