| Name | Category | Theorems |
commRing π | CompOp | 20 mathmath: congr_symm_apply_of, Field.DirectLimit.exists_inv, congr_apply_of, of_injective, Field.DirectLimit.mul_inv_cancel, hom_ext_iff, ringEquiv_of, quotientMk_of, map_id, map_comp, lift_comp_of, ringEquiv_symm_mk, Field.DirectLimit.inv_mul_cancel, lift_of, exists_of, Polynomial.exists_of, lift_injective, map_apply_of, of_f, lift_of'
|
instInhabited π | CompOp | β |
map π | CompOp | 3 mathmath: map_id, map_comp, map_apply_of
|
of π | CompOp | 14 mathmath: congr_symm_apply_of, congr_apply_of, of_injective, hom_ext_iff, ringEquiv_of, quotientMk_of, lift_comp_of, ringEquiv_symm_mk, lift_of, exists_of, Polynomial.exists_of, map_apply_of, of_f, lift_of'
|
ringEquiv π | CompOp | 2 mathmath: ringEquiv_of, ringEquiv_symm_mk
|
zero π | CompOp | β |