Documentation Verification Report

Ring

πŸ“ Source: Mathlib/Algebra/Colimit/Ring.lean

Statistics

MetricCount
Definitionsinv, commRing, instInhabited, map, of, ringEquiv, zero
7
Theoremsexists_inv, inv_mul_cancel, mul_inv_cancel, nontrivial, exists_of, congr_apply_of, congr_symm_apply_of, exists_of, hom_ext, hom_ext_iff, induction_on, lift_comp_of, lift_injective, lift_of, lift_of', map_apply_of, map_comp, map_id, zero_exact, of_f, of_injective, quotientMk_of, ringEquiv_of, ringEquiv_symm_mk
24
Total31

Field.DirectLimit

Definitions

NameCategoryTheorems
inv πŸ“–CompOp
2 mathmath: mul_inv_cancel, inv_mul_cancel

Theorems

NameKindAssumesProvesValidatesDepends On
exists_inv πŸ“–mathematicalβ€”Ring.DirectLimit
Field.toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ring.DirectLimit.commRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ring.DirectLimit.ring
β€”Ring.DirectLimit.induction_on
RingHom.map_mul
mul_inv_cancelβ‚€
RingHom.map_zero
RingHom.map_one
inv_mul_cancel πŸ“–mathematicalβ€”Ring.DirectLimit
Field.toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ring.DirectLimit.commRing
inv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ring.DirectLimit.ring
β€”mul_comm
mul_inv_cancel
mul_inv_cancel πŸ“–mathematicalβ€”Ring.DirectLimit
Field.toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ring.DirectLimit.commRing
inv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Ring.DirectLimit.ring
β€”exists_inv
inv.eq_1
nontrivial πŸ“–mathematicalβ€”Nontrivial
Ring.DirectLimit
Field.toCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
β€”RingHom.map_one
Ring.DirectLimit.of.zero_exact
one_ne_zero
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing

Ring.DirectLimit

Definitions

NameCategoryTheorems
commRing πŸ“–CompOp
20 mathmath: congr_symm_apply_of, Field.DirectLimit.exists_inv, congr_apply_of, of_injective, Field.DirectLimit.mul_inv_cancel, hom_ext_iff, ringEquiv_of, quotientMk_of, map_id, map_comp, lift_comp_of, ringEquiv_symm_mk, Field.DirectLimit.inv_mul_cancel, lift_of, exists_of, Polynomial.exists_of, lift_injective, map_apply_of, of_f, lift_of'
instInhabited πŸ“–CompOpβ€”
map πŸ“–CompOp
3 mathmath: map_id, map_comp, map_apply_of
of πŸ“–CompOp
14 mathmath: congr_symm_apply_of, congr_apply_of, of_injective, hom_ext_iff, ringEquiv_of, quotientMk_of, lift_comp_of, ringEquiv_symm_mk, lift_of, exists_of, Polynomial.exists_of, map_apply_of, of_f, lift_of'
ringEquiv πŸ“–CompOp
2 mathmath: ringEquiv_of, ringEquiv_symm_mk
zero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
congr_apply_of πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingEquiv.toRingHom
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
Ring.DirectLimit
RingHom
RingHom.instFunLike
commRing
congr
of
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_apply_of
congr_symm_apply_of πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingEquiv.toRingHom
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
Ring.DirectLimit
RingHom
RingHom.instFunLike
commRing
RingEquiv.symm
congr
of
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_apply_of
exists_of πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring.DirectLimit
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
RingHom.instFunLike
of
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
FreeCommRing.induction_on
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
exists_ge_ge
map_add
AddMonoidHomClass.toAddHomClass
of_f
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
hom_ext πŸ“–β€”RingHom.comp
Ring.DirectLimit
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
of
β€”β€”Ideal.Quotient.ringHom_ext
Ideal.instIsTwoSided_1
FreeCommRing.hom_ext
hom_ext_iff πŸ“–mathematicalβ€”RingHom.comp
Ring.DirectLimit
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
of
β€”hom_ext
induction_on πŸ“–β€”DFunLike.coe
RingHom
Ring.DirectLimit
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
RingHom.instFunLike
of
β€”β€”exists_of
lift_comp_of πŸ“–mathematicalβ€”lift
RingHom.comp
Ring.DirectLimit
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
of
β€”hom_ext
RingHom.ext
lift_of
lift_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ring.DirectLimit
commRing
lift
β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
induction_on
lift_of
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
lift_of πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ring.DirectLimit
commRing
lift
of
β€”FreeCommRing.lift_of
lift_of' πŸ“–mathematicalβ€”lift
Ring.DirectLimit
commRing
of
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”hom_ext
RingHom.ext
lift_of
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
map_apply_of πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingHom
Ring.DirectLimit
RingHom.instFunLike
commRing
map
of
β€”lift_of
map_comp πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.DirectLimit
DFunLike.coe
RingHom
RingHom.instFunLike
commRing
map
β€”hom_ext
RingHom.ext
map_apply_of
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom
RingHom.comp
Ring.DirectLimit
DFunLike.coe
RingHom.instFunLike
commRing
β€”hom_ext
RingHom.ext
map_apply_of
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
of_f πŸ“–mathematicalPreorder.toLEDFunLike.coe
RingHom
Ring.DirectLimit
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
RingHom.instFunLike
of
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.eq
Submodule.subset_span
of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ring.DirectLimit
commRing
of
β€”NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
Equiv.comp_injective
DirectLimit.mk_injective
quotientMk_of πŸ“–mathematicalβ€”DFunLike.coe
RingHom
FreeCommRing
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
instCommRingFreeCommRing
Ideal.instHasQuotient
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
setOf
Preorder.toLE
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
FreeCommRing.of
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Ring.DirectLimit
commRing
of
β€”Ideal.instIsTwoSided_1
ringEquiv_of πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Ring.DirectLimit
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
DirectLimit
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
DirectLimit.instMul
Distrib.toAdd
DirectLimit.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
ringEquiv
of
DirectLimit.setoid
β€”NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
lift_of
ringEquiv_symm_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
DirectLimit
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ring.DirectLimit
DirectLimit.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
DirectLimit.instAdd
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
ringEquiv
DirectLimit.setoid
of
β€”NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass

Ring.DirectLimit.Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
exists_of πŸ“–mathematicalβ€”Polynomial.map
Ring.DirectLimit
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ring.DirectLimit.commRing
Ring.DirectLimit.of
β€”Polynomial.induction_on
Ring.DirectLimit.exists_of
Polynomial.map_C
exists_ge_ge
Polynomial.map_add
Polynomial.map_map
RingHom.ext
Ring.DirectLimit.of_f
Polynomial.map_mul
Polynomial.map_pow
Polynomial.map_X

Ring.DirectLimit.of

Theorems

NameKindAssumesProvesValidatesDepends On
zero_exact πŸ“–mathematicalDFunLike.coe
RingHom
Ring.DirectLimit
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ring.DirectLimit.commRing
Ring.DirectLimit.of
Ring.DirectLimit.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”DirectLimit.exists_eq_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
Ring.DirectLimit.ringEquiv_of
map_zero
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass

---

← Back to Index