Documentation Verification Report

ApproximationCorollaries

📁 Source: Mathlib/Algebra/ContinuedFractions/Computation/ApproximationCorollaries.lean

Statistics

MetricCount
Definitions0
Theoremsconvs_succ, of_convergence, of_convergence_epsilon, of_convs_eq_convs'
4
Total4

GenContFract

Theorems

NameKindAssumesProvesValidatesDepends On
convs_succ 📖mathematicalconvs
Field.toDivisionRing
of
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Int.floor
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Int.fract
of_convs_eq_convs'
convs'_succ
of_convergence 📖mathematicalFilter.Tendsto
convs
Field.toDivisionRing
of
Filter.atTop
Nat.instPreorder
nhds
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
abs_sub_comm
instIsDirectedOrder
Nat.instIsStrictOrderedRing
instArchimedeanNat
of_convergence_epsilon
of_convergence_epsilon 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
convs
of
exists_nat_gt
of_correctness_of_terminatedAt
sub_eq_zero
Nat.cast_zero
Nat.abs_cast
IsStrictOrderedRing.toIsOrderedRing
abs_sub_convs_le
succ_nth_fib_le_of_nth_den
terminated_stable
LE.le.trans_lt'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.fib_pos
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
div_lt_iff₀'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_max_left
Nat.le_fib_self
le_trans
le_max_right
Nat.fib_le_fib_succ
Nat.mono_cast
Nat.cast_nonneg'
mul_le_mul
IsOrderedRing.toMulPosMono
le_of_lt
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
lt_of_le_of_lt
of_convs_eq_convs' 📖mathematicalconvs
Field.toDivisionRing
of
convs'
ContFract.convs_eq_convs'

---

← Back to Index