Documentation Verification Report

Approximations

πŸ“ Source: Mathlib/Algebra/ContinuedFractions/Computation/Approximations.lean

Statistics

MetricCount
Definitionsof, of
2
Theoremsnth_stream_fr_lt_one, nth_stream_fr_nonneg, nth_stream_fr_nonneg_lt_one, one_le_succ_nth_stream_b, succ_nth_stream_b_le_nth_stream_fr_inv, abs_sub_convergents_le', abs_sub_convs_le, exists_int_eq_of_partDen, fib_le_of_contsAux_b, le_of_succ_get?_den, le_of_succ_succ_get?_contsAux_b, of_den_mono, of_isSimpContFract, of_one_le_get?_partDen, of_partNum_eq_one, of_partNum_eq_one_and_exists_int_partDen_eq, sub_convs_eq, succ_nth_fib_le_of_nth_den, zero_le_of_contsAux_b, zero_le_of_den, of_isContFract
21
Total23

ContFract

Definitions

NameCategoryTheorems
of πŸ“–CompOpβ€”

GenContFract

Theorems

NameKindAssumesProvesValidatesDepends On
abs_sub_convergents_le' πŸ“–mathematicalStream'.Seq.get?
partDens
of
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
convs
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
dens
β€”LE.le.trans
abs_sub_convs_le
LE.le.eq_or_lt'
zero_le_of_den
MulZeroClass.zero_mul
div_zero
MulZeroClass.mul_zero
one_div_le_one_div_of_le
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LT.lt.trans_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
of_one_le_get?_partDen
mul_pos
mul_comm
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
le_of_succ_get?_den
le_of_lt
abs_sub_convs_le πŸ“–mathematicalTerminatedAt
of
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
convs
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
dens
β€”of_partNum_eq_one
partNum_eq_s_a
contsAux_recurrence
one_mul
add_comm
IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some
IntFractPair.succ_nth_stream_eq_some_iff
fib_le_of_contsAux_b
terminated_stable
LE.le.trans_lt'
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.fib_pos
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
IntFractPair.succ_nth_stream_b_le_nth_stream_fr_inv
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
le_of_lt
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
add_le_add_right
div_le_div_of_nonneg_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zero_le_one
le_trans
inv_pos
lt_of_le_of_ne
IntFractPair.nth_stream_fr_nonneg
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
abs_of_pos
abs_div
abs_neg_one_pow
exists_int_eq_of_partDen πŸ“–mathematicalStream'.Seq.get?
partDens
of
Field.toDivisionRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”exists_s_b_of_partDen
of_partNum_eq_one_and_exists_int_partDen_eq
fib_le_of_contsAux_b πŸ“–mathematicalTerminatedAt
of
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Nat.fib
Pair.b
contsAux
β€”Nat.strong_induction_on
Nat.cast_zero
zero_add
Nat.cast_one
of_h_eq_floor
terminated_stable
lt_trans
of_one_le_get?_partDen
partDen_eq_s_b
mul_le_mul
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toMulPosMono
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
le_of_lt
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_ofNat
one_mul
add_le_add
covariant_swap_add_of_covariant_add
of_partNum_eq_one
partNum_eq_s_a
Nat.fib_add_two
Nat.cast_add
contsAux_recurrence
add_comm
le_of_succ_get?_den πŸ“–mathematicalStream'.Seq.get?
partDens
of
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
dens
β€”den_eq_conts_b
nth_cont_eq_succ_nth_contAux
le_of_succ_succ_get?_contsAux_b
le_of_succ_succ_get?_contsAux_b πŸ“–mathematicalStream'.Seq.get?
partDens
of
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Pair.b
contsAux
β€”exists_s_b_of_partDen
contsAux_recurrence
of_partNum_eq_one
partNum_eq_s_a
one_mul
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
of_den_mono πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
dens
Field.toDivisionRing
of
β€”Stream'.Seq.TerminatedAt.eq_1
terminatedAt_iff_partDen_none
dens_stable_of_terminated
le_refl
of_one_le_get?_partDen
one_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
zero_le_of_den
le_of_succ_get?_den
of_isSimpContFract πŸ“–mathematicalβ€”IsSimpContFract
of
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”of_partNum_eq_one
of_one_le_get?_partDen πŸ“–mathematicalStream'.Seq.get?
partDens
of
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”exists_s_b_of_partDen
IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some
Nat.cast_one
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IntFractPair.one_le_succ_nth_stream_b
of_partNum_eq_one πŸ“–mathematicalStream'.Seq.get?
partNums
of
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”exists_s_a_of_partNum
of_partNum_eq_one_and_exists_int_partDen_eq
of_partNum_eq_one_and_exists_int_partDen_eq πŸ“–mathematicalStream'.Seq.get?
Pair
s
of
Field.toDivisionRing
Pair.a
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Pair.b
AddGroupWithOne.toIntCast
β€”IntFractPair.exists_succ_get?_stream_of_gcf_of_get?_eq_some
get?_of_eq_some_of_succ_get?_intFractPair_stream
IsStrictOrderedRing.toCharZero
sub_convs_eq πŸ“–mathematicalIntFractPair.stream
Field.toDivisionRing
IntFractPair
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
convs
of
IntFractPair.fr
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
LinearOrder.toDecidableEq
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pair.b
contsAux
Distrib.toAdd
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”compExactValue_correctness_of_stream_eq_some
eq_or_ne
sub_eq_zero
one_mul
add_comm
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
of_terminatedAt_n_iff_succ_nth_intFractPair_stream_eq_none
SimpContFract.determinant_aux
fib_le_of_contsAux_b
terminated_stable
zero_add
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
LE.le.trans_lt'
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Nat.fib_pos
LE.le.trans
Nat.cast_nonneg
Ne.lt_of_le'
IntFractPair.nth_stream_fr_nonneg
ne_of_gt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedRing.toIsOrderedAddMonoid
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
succ_nth_fib_le_of_nth_den πŸ“–mathematicalTerminatedAt
of
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Nat.fib
dens
β€”den_eq_conts_b
nth_cont_eq_succ_nth_contAux
le_refl
fib_le_of_contsAux_b
zero_le_of_contsAux_b πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Pair.b
contsAux
Field.toDivisionRing
of
β€”le_refl
zero_add
of_h_eq_floor
IsStrictOrderedRing.toZeroLEOneClass
contsAux_stable_step_of_terminated
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toCharZero
fib_le_of_contsAux_b
zero_le_of_den πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
dens
Field.toDivisionRing
of
β€”den_eq_conts_b
nth_cont_eq_succ_nth_contAux
zero_le_of_contsAux_b

GenContFract.IntFractPair

Theorems

NameKindAssumesProvesValidatesDepends On
nth_stream_fr_lt_one πŸ“–mathematicalstream
Field.toDivisionRing
GenContFract.IntFractPair
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
fr
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”nth_stream_fr_nonneg_lt_one
nth_stream_fr_nonneg πŸ“–mathematicalstream
Field.toDivisionRing
GenContFract.IntFractPair
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
fr
β€”nth_stream_fr_nonneg_lt_one
nth_stream_fr_nonneg_lt_one πŸ“–mathematicalstream
Field.toDivisionRing
GenContFract.IntFractPair
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
fr
Preorder.toLT
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”of.eq_1
Int.fract_nonneg
Int.fract_lt_one
succ_nth_stream_eq_some_iff
one_le_succ_nth_stream_b πŸ“–mathematicalstream
Field.toDivisionRing
GenContFract.IntFractPair
bβ€”succ_nth_stream_eq_some_iff
of.eq_1
Int.le_floor
Int.cast_one
one_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LE.le.lt_of_ne'
nth_stream_fr_nonneg
LT.lt.le
nth_stream_fr_lt_one
succ_nth_stream_b_le_nth_stream_fr_inv πŸ“–mathematicalstream
Field.toDivisionRing
GenContFract.IntFractPair
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
b
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
fr
β€”Int.floor_le
Option.bind_congr'

SimpContFract

Definitions

NameCategoryTheorems
of πŸ“–CompOp
1 mathmath: of_isContFract

Theorems

NameKindAssumesProvesValidatesDepends On
of_isContFract πŸ“–mathematicalβ€”IsContFract
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
of
β€”lt_of_lt_of_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
GenContFract.of_one_le_get?_partDen

---

← Back to Index