Documentation Verification Report

ConvergentsEquiv

📁 Source: Mathlib/Algebra/ContinuedFractions/ConvergentsEquiv.lean

Statistics

MetricCount
DefinitionssquashGCF, squashSeq
2
Theoremsconvs_eq_convs', contsAux_eq_contsAux_squashGCF_of_le, convs_eq_convs', squashGCF_eq_self_of_terminated, squashGCF_nth_of_lt, squashSeq_eq_self_of_terminated, squashSeq_nth_of_lt, squashSeq_nth_of_not_terminated, squashSeq_succ_n_tail_eq_squashSeq_tail_n, succ_nth_conv'_eq_squashGCF_nth_conv', succ_nth_conv_eq_squashGCF_nth_conv, succ_succ_nth_conv'Aux_eq_succ_nth_conv'Aux_squashSeq
12
Total14

ContFract

Theorems

NameKindAssumesProvesValidatesDepends On
convs_eq_convs' 📖mathematicalGenContFract.convs
Field.toDivisionRing
GenContFract
GenContFract.IsSimpContFract
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
SimpContFract
SimpContFract.IsContFract
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
GenContFract.convs'
Stream'.ext
GenContFract.convs_eq_convs'
LT.lt.trans_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Eq.le
GenContFract.partNum_eq_s_a
GenContFract.partDen_eq_s_b

GenContFract

Definitions

NameCategoryTheorems
squashGCF 📖CompOp
5 mathmath: succ_nth_conv_eq_squashGCF_nth_conv, contsAux_eq_contsAux_squashGCF_of_le, succ_nth_conv'_eq_squashGCF_nth_conv', squashGCF_eq_self_of_terminated, squashGCF_nth_of_lt
squashSeq 📖CompOp
5 mathmath: squashSeq_succ_n_tail_eq_squashSeq_tail_n, squashSeq_nth_of_lt, succ_succ_nth_conv'Aux_eq_succ_nth_conv'Aux_squashSeq, squashSeq_eq_self_of_terminated, squashSeq_nth_of_not_terminated

Theorems

NameKindAssumesProvesValidatesDepends On
contsAux_eq_contsAux_squashGCF_of_le 📖mathematicalcontsAux
squashGCF
Nat.strong_induction_on
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
LT.lt.le
lt_add_of_pos_right
zero_lt_two
le_trans
squashGCF_nth_of_lt
convs_eq_convs' 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Pair.a
Pair.b
convs
Field.toDivisionRing
convs'
zeroth_conv_eq_h
zeroth_conv'_eq_h
squashGCF_eq_self_of_terminated
convs_stable_of_terminated
exists_s_b_of_partDen
ne_of_lt
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
succ_nth_conv_eq_squashGCF_nth_conv
Stream'.Seq.ge_stable
add_pos
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
squashSeq_nth_of_not_terminated
squashGCF_nth_of_lt
succ_nth_conv'_eq_squashGCF_nth_conv'
squashGCF_eq_self_of_terminated 📖mathematicalTerminatedAtsquashGCFsquashSeq_eq_self_of_terminated
squashGCF_nth_of_lt 📖mathematicalStream'.Seq.get?
Pair
s
squashGCF
squashSeq_nth_of_lt
squashSeq_eq_self_of_terminated 📖mathematicalStream'.Seq.TerminatedAt
Pair
squashSeq
squashSeq_nth_of_lt 📖mathematicalStream'.Seq.get?
Pair
squashSeq
squashSeq_eq_self_of_terminated
Stream'.Seq.ge_stable
LT.lt.ne
squashSeq_nth_of_not_terminated 📖mathematicalStream'.Seq.get?
Pair
squashSeq
Pair.a
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Pair.b
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Option.map₂_coe_right
squashSeq_succ_n_tail_eq_squashSeq_tail_n 📖mathematicalStream'.Seq.tail
Pair
squashSeq
Stream'.Seq.ge_stable
Stream'.Seq.ext
Option.map₂_coe_right
Option.map₂_none_right
succ_nth_conv'_eq_squashGCF_nth_conv' 📖mathematicalconvs'
squashGCF
add_zero
succ_succ_nth_conv'Aux_eq_succ_nth_conv'Aux_squashSeq
succ_nth_conv_eq_squashGCF_nth_conv 📖mathematicalconvs
Field.toDivisionRing
squashGCF
squashGCF_eq_self_of_terminated
convs_stable_of_terminated
partDen_eq_s_b
zero_add
conts_recurrenceAux
zeroth_contAux_eq_one_zero
first_contAux_eq_h_one
mul_one
MulZeroClass.mul_zero
add_zero
div_one
Stream'.Seq.ge_stable
squashSeq_nth_of_not_terminated
conv_eq_conts_a_div_conts_b
contsAux_recurrence
contsAux_eq_contsAux_squashGCF_of_le
le_refl
succ_succ_nth_conv'Aux_eq_succ_nth_conv'Aux_squashSeq 📖mathematicalconvs'Aux
squashSeq
squashSeq_eq_self_of_terminated
convs'Aux_stable_step_of_terminated
Stream'.Seq.ge_stable
zero_le_one
Nat.instZeroLEOneClass
squashSeq_nth_of_not_terminated
zero_add
add_zero
squashSeq_nth_of_lt
squashSeq_succ_n_tail_eq_squashSeq_tail_n

---

← Back to Index