| Name | Category | Theorems |
a 📖 | CompOp | 13 mathmath: ext_iff, disc_eq_prod_three_roots, c_eq_three_roots, mem_roots_iff, discr_eq_prod_three_roots, a_of_eq, leadingCoeff_of_a_ne_zero, eq_sum_three_roots, eq_prod_three_roots, equiv_symm_apply_a, d_eq_three_roots, b_eq_three_roots, coeff_eq_a
|
b 📖 | CompOp | 8 mathmath: ext_iff, coeff_eq_b, mem_roots_iff, of_a_eq_zero, equiv_symm_apply_b, b_of_eq, leadingCoeff_of_b_ne_zero, b_eq_three_roots
|
c 📖 | CompOp | 9 mathmath: ext_iff, c_eq_three_roots, coeff_eq_c, mem_roots_iff, of_a_eq_zero, of_b_eq_zero, equiv_symm_apply_c, c_of_eq, leadingCoeff_of_c_ne_zero
|
d 📖 | CompOp | 10 mathmath: d_of_eq, ext_iff, mem_roots_iff, of_a_eq_zero, of_b_eq_zero, coeff_eq_d, leadingCoeff_of_c_eq_zero, equiv_symm_apply_d, d_eq_three_roots, of_c_eq_zero
|
disc 📖 | CompOp | — |
discr 📖 | CompOp | 10 mathmath: WeierstrassCurve.twoTorsionPolynomial_discr_of_char_three, WeierstrassCurve.twoTorsionPolynomial_disc_of_char_three, disc_eq_prod_three_roots, discr_eq_prod_three_roots, WeierstrassCurve.twoTorsionPolynomial_disc_of_char_two, WeierstrassCurve.twoTorsionPolynomial_discr_isUnit, WeierstrassCurve.twoTorsionPolynomial_disc_isUnit, WeierstrassCurve.twoTorsionPolynomial_disc, WeierstrassCurve.twoTorsionPolynomial_discr_of_char_two, WeierstrassCurve.twoTorsionPolynomial_discr
|
equiv 📖 | CompOp | 5 mathmath: equiv_symm_apply_b, equiv_symm_apply_c, equiv_apply_coe, equiv_symm_apply_d, equiv_symm_apply_a
|
instInhabited 📖 | CompOp | — |
instZero 📖 | CompOp | 4 mathmath: zero, natDegree_of_zero, toPoly_eq_zero_iff, degree_of_zero
|
map 📖 | CompOp | 8 mathmath: splits_iff_card_roots, card_roots_of_disc_ne_zero, card_roots_of_discr_ne_zero, disc_ne_zero_iff_roots_nodup, splits_iff_roots_eq_three, discr_ne_zero_iff_roots_nodup, map_roots, map_toPoly
|
roots 📖 | CompOp | 9 mathmath: mem_roots_iff, splits_iff_card_roots, card_roots_of_disc_ne_zero, card_roots_of_discr_ne_zero, disc_ne_zero_iff_roots_nodup, splits_iff_roots_eq_three, card_roots_le, discr_ne_zero_iff_roots_nodup, map_roots
|
toPoly 📖 | CompOp | 73 mathmath: of_a_eq_zero', degree_of_b_eq_zero, natDegree_of_b_ne_zero, coeff_eq_b, natDegree_of_c_ne_zero, coeff_eq_c, monic_of_c_eq_one, WeierstrassCurve.Affine.polynomial_eq, splits_iff_card_roots, degree_of_a_eq_zero', coeff_eq_zero, degree_of_a_ne_zero', of_a_eq_zero, of_b_eq_zero, coeff_eq_d, of_d_eq_zero, leadingCoeff_of_b_ne_zero', degree_of_d_ne_zero, natDegree_of_a_ne_zero, of_c_eq_zero', natDegree_of_b_eq_zero', of_b_eq_zero', WeierstrassCurve.Ψ₂Sq_eq, degree_of_d_eq_zero, toPoly_injective, WeierstrassCurve.Affine.addPolynomial_eq, splits_iff_roots_eq_three, natDegree_of_c_eq_zero, leadingCoeff_of_c_eq_zero', leadingCoeff_of_a_ne_zero, natDegree_of_a_eq_zero', monic_of_a_eq_one', natDegree_of_c_eq_zero', monic_of_b_eq_one', monic_of_c_eq_one', degree_of_a_eq_zero, natDegree_of_a_eq_zero, prod_X_sub_C_eq, degree_of_c_ne_zero, degree_of_a_ne_zero, monic_of_a_eq_one, zero, degree_of_d_eq_zero', natDegree_of_zero, equiv_apply_coe, of_d_eq_zero', leadingCoeff_of_c_eq_zero, degree_of_b_ne_zero', degree_of_b_eq_zero', natDegree_of_b_ne_zero', degree_of_c_ne_zero', degree_of_d_ne_zero', monic_of_d_eq_one', eq_prod_three_roots, map_roots, leadingCoeff_of_c_ne_zero, toPoly_eq_zero_iff, monic_of_d_eq_one, degree_of_c_eq_zero, natDegree_of_c_ne_zero', leadingCoeff_of_b_ne_zero, map_toPoly, leadingCoeff_of_a_ne_zero', C_mul_prod_X_sub_C_eq, natDegree_of_a_ne_zero', degree_of_c_eq_zero', leadingCoeff_of_c_ne_zero', monic_of_b_eq_one, coeff_eq_a, of_c_eq_zero, degree_of_zero, degree_of_b_ne_zero, natDegree_of_b_eq_zero
|