Documentation Verification Report

Algebra

πŸ“ Source: Mathlib/Algebra/DirectSum/Algebra.lean

Statistics

MetricCount
DefinitionsdirectSumGAlgebra, GAlgebra, toFun, gMulLHom, instAlgebra, toAlgebra
6
TheoremsdirectSumGAlgebra_toFun_apply, commutes, map_mul, map_one, smul_def, algHom_ext, algHom_ext', algHom_ext'_iff, algebraMap_apply, algebraMap_toAddMonoid_hom, gMulLHom_apply_apply, toAlgebra_apply, isScalarTower_right, smulCommClass_right
14
Total20

Algebra

Definitions

NameCategoryTheorems
directSumGAlgebra πŸ“–CompOp
3 mathmath: directSumGAlgebra_toFun_apply, addMonoidAlgebraAlgEquivDirectSum_symm_apply, addMonoidAlgebraAlgEquivDirectSum_apply

Theorems

NameKindAssumesProvesValidatesDepends On
directSumGAlgebra_toFun_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddMonoidHom.instFunLike
DirectSum.GAlgebra.toFun
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
Semiring.directSumGSemiring
directSumGAlgebra
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.toOneHom
RingHom.toMonoidHom
algebraMap
β€”β€”

DirectSum

Definitions

NameCategoryTheorems
GAlgebra πŸ“–CompDataβ€”
gMulLHom πŸ“–CompOp
1 mathmath: gMulLHom_apply_apply
instAlgebra πŸ“–CompOp
33 mathmath: TensorAlgebra.ofDirectSum_of_tprod, ExteriorAlgebra.GradedAlgebra.liftΞΉ_eq, decomposeAlgEquiv_symm_apply, TensorAlgebra.toDirectSum_tensorPower_tprod, TensorProduct.gradedComm_algebraMap_tmul, TensorAlgebra.toDirectSum_ofDirectSum, algebraMap_toAddMonoid_hom, AddMonoidAlgebra.decomposeAux_coe, TensorAlgebra.equivDirectSum_apply, toAlgebra_apply, TensorProduct.gradedComm_algebraMap, algebraMap_apply, TensorProduct.algebraMap_gradedMul, addMonoidAlgebraAlgEquivDirectSum_symm_apply, coeAlgHom_of, decompose_symm_algebraMap, TensorAlgebra.ofDirectSum_toDirectSum, decompose_algebraMap, algHom_ext'_iff, TensorAlgebra.toDirectSum_comp_ofDirectSum, decomposeAlgEquiv_apply, TensorProduct.gradedComm_tmul_algebraMap, TensorAlgebra.equivDirectSum_symm_apply, TensorProduct.gradedMul_algebraMap, TensorProduct.tmul_of_gradedMul_of_tmul, Submodule.iSup_eq_toSubmodule_range, AddMonoidAlgebra.decomposeAux_single, AddMonoidAlgebra.decomposeAux_eq_decompose, CliffordAlgebra.GradedAlgebra.lift_ΞΉ_eq, TensorAlgebra.toDirectSum_ΞΉ, TensorAlgebra.ofDirectSum_comp_toDirectSum, CliffordAlgebra.GradedAlgebra.ΞΉ_sq_scalar, addMonoidAlgebraAlgEquivDirectSum_apply
toAlgebra πŸ“–CompOp
1 mathmath: toAlgebra_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algHom_ext πŸ“–β€”DFunLike.coe
AlgHom
DirectSum
semiring
instAlgebra
AlgHom.funLike
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
β€”β€”algHom_ext'
LinearMap.ext
RingHomCompTriple.ids
algHom_ext' πŸ“–β€”LinearMap.comp
DirectSum
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Algebra.toModule
instAlgebra
RingHom.id
RingHomCompTriple.ids
AlgHom.toLinearMap
lof
β€”β€”RingHomCompTriple.ids
AlgHom.toLinearMap_injective
linearMap_ext
algHom_ext'_iff πŸ“–mathematicalβ€”LinearMap.comp
DirectSum
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Algebra.toModule
instAlgebra
RingHom.id
RingHomCompTriple.ids
AlgHom.toLinearMap
lof
β€”RingHomCompTriple.ids
algHom_ext'
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
DirectSum
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
semiring
RingHom.instFunLike
algebraMap
instAlgebra
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
GAlgebra.toFun
β€”β€”
algebraMap_toAddMonoid_hom πŸ“–mathematicalβ€”AddMonoidHomClass.toAddMonoidHom
DirectSum
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
semiring
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
RingHom.instFunLike
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
algebraMap
instAlgebra
AddMonoidHom.comp
AddZero.toZero
of
GAlgebra.toFun
β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
gMulLHom_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
gMulLHom
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
GSemiring.toGNonUnitalNonAssocSemiring
β€”smulCommClass_self
toAlgebra_apply πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
LinearMap.instFunLike
GradedMonoid.GOne.one
GradedMonoid.GMonoid.toGOne
GSemiring.toGMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
GSemiring.toGNonUnitalNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AlgHom
DirectSum
semiring
instAlgebra
AlgHom.funLike
toAlgebra
RingHom
RingHom.instFunLike
toSemiring
LinearMap.toAddMonoidHom
β€”β€”

DirectSum.GAlgebra

Definitions

NameCategoryTheorems
toFun πŸ“–CompOp
10 mathmath: DirectSum.algebraMap_toAddMonoid_hom, Algebra.directSumGAlgebra_toFun_apply, DirectSum.algebraMap_apply, TensorPower.galgebra_toFun_def, Submodule.setLike.coe_galgebra_toFun, map_mul, smul_def, commutes, map_one, TensorPower.toTensorAlgebra_galgebra_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
commutes πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
DirectSum.GSemiring.toGNonUnitalNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
AddMonoidHom
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
toFun
β€”β€”
map_mul πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
AddMonoidHom
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
toFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GradedMonoid.GMul.mul
DirectSum.GNonUnitalNonAssocSemiring.toGMul
DirectSum.GSemiring.toGNonUnitalNonAssocSemiring
β€”β€”
map_one πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
toFun
AddMonoidWithOne.toOne
GradedMonoid.GOne.one
GradedMonoid.GMonoid.toGOne
DirectSum.GSemiring.toGMonoid
β€”β€”
smul_def πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
DirectSum.GSemiring.toGNonUnitalNonAssocSemiring
DFunLike.coe
AddMonoidHom
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
toFun
β€”β€”

GradedMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
isScalarTower_right πŸ“–mathematicalβ€”IsScalarTower
GradedMonoid
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
GMonoid.toMonoid
DirectSum.GSemiring.toGMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”DirectSum.GAlgebra.smul_def
mul_assoc
smulCommClass_right πŸ“–mathematicalβ€”SMulCommClass
GradedMonoid
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
GMonoid.toMonoid
DirectSum.GSemiring.toGMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”DirectSum.GAlgebra.smul_def
mul_assoc
DirectSum.GAlgebra.commutes

---

← Back to Index