Documentation Verification Report

Decomposition

πŸ“ Source: Mathlib/Algebra/DirectSum/Decomposition.lean

Statistics

MetricCount
DefinitionsDecomposition, decompose', ofAddHom, ofLinearMap, chooseDecomposition, IsHomogeneous, addCommGroupSetLike, decompose, decomposeAddEquiv, decomposeLinearEquiv
10
Theoremsext, mem_iff, decompose'_eq, inductionOn, isInternal, left_inv, right_inv, decomposeAddEquiv_apply, decomposeAddEquiv_symm_apply, decomposeLinearEquiv_apply, decomposeLinearEquiv_symm_apply, decomposeLinearEquiv_symm_comp_lof, decompose_add, decompose_coe, decompose_lhom_ext, decompose_neg, decompose_of_mem, decompose_of_mem_ne, decompose_of_mem_same, decompose_smul, decompose_sub, decompose_sum, decompose_symm_add, decompose_symm_neg, decompose_symm_of, decompose_symm_sub, decompose_symm_sum, decompose_symm_zero, decompose_zero, degree_eq_of_mem_mem, instSubsingletonDecomposition, sum_support_decompose
32
Total42

DirectSum

Definitions

NameCategoryTheorems
Decomposition πŸ“–CompData
1 mathmath: instSubsingletonDecomposition
addCommGroupSetLike πŸ“–CompOp
4 mathmath: decompose_sub, decompose_symm_sub, decompose_symm_neg, decompose_neg
decompose πŸ“–CompOp
60 mathmath: decompose_sub, Decomposition.decompose'_eq, decompose_of_mem_same, decomposeAlgEquiv_symm_apply, LinearMap.IsSymmetric.directSum_decompose_apply, decompose_eq_mul_idempotent, decompose_of_mem, decompose_symm_sub, coe_decompose_mul_add_of_left_mem, decompose_symm_neg, coe_decompose_mul_of_left_mem_of_le, decompose_symm_one, coe_decompose_mul_of_left_mem, GradedAlgebra.proj_recompose, decompose_mul_add_left, decompose_symm_algebraMap, decompose_symm_add, coe_decompose_mul_of_right_mem_of_not_le, coe_decompose_mul_of_left_mem_of_not_le, decompose_algebraMap, AddMonoidAlgebra.GradesBy.decompose_single, GradedRing.mem_support_iff, coe_decompose_mul_of_right_mem, GradedTensorProduct.auxEquiv_tmul, decomposeLinearEquiv_apply, coe_decompose_mul_add_of_right_mem, decompose_zero, decomposeLinearEquiv_symm_apply, decomposeAlgEquiv_apply, AddMonoidAlgebra.grade.decompose_single, decompose_of_mem_ne, Submodule.IsHomogeneous.mem_iff, SetLike.IsHomogeneous.mem_iff, decompose_symm_mul, GradedAlgebra.proj_apply, decomposeAddEquiv_symm_apply, GradedRing.projZeroRingHom_apply, decompose_symm_zero, decomposeAddEquiv_apply, decompose_mul, decompose_coe, decompose_one, decompose_mul_add_right, AddMonoidAlgebra.decomposeAux_eq_decompose, coe_decompose_mul_of_left_mem_zero, coe_decompose_mul_of_right_mem_of_le, sum_support_decompose, coe_decompose_mul_of_right_mem_zero, AddSubmonoidClass.IsHomogeneous.mem_iff, GradedAlgebra.mem_support_iff, decompose_symm_of, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec.image_basicOpen_eq_basicOpen, decompose_neg, decompose_symm_sum, decompose_add, decompose_sum, decompose_smul, GradedRing.proj_apply, GradedRing.proj_recompose, Ideal.IsHomogeneous.mem_iff
decomposeAddEquiv πŸ“–CompOp
2 mathmath: decomposeAddEquiv_symm_apply, decomposeAddEquiv_apply
decomposeLinearEquiv πŸ“–CompOp
3 mathmath: decomposeLinearEquiv_apply, decomposeLinearEquiv_symm_comp_lof, decomposeLinearEquiv_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
decomposeAddEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidDirectSum
EquivLike.toFunLike
AddEquiv.instEquivLike
decomposeAddEquiv
Equiv
Equiv.instEquivLike
decompose
β€”β€”
decomposeAddEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidDirectSum
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
decomposeAddEquiv
Equiv
Equiv.instEquivLike
Equiv.symm
decompose
β€”β€”
decomposeLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
DirectSum
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
instAddCommMonoidDirectSum
instModule
Submodule.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
decomposeLinearEquiv
Equiv
AddSubmonoidClass.toAddCommMonoid
Submodule.addSubmonoidClass
Equiv.instEquivLike
decompose
β€”Submodule.addSubmonoidClass
RingHomInvPair.ids
decomposeLinearEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
DirectSum
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
instAddCommMonoidDirectSum
instModule
Submodule.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
decomposeLinearEquiv
Equiv
AddSubmonoidClass.toAddCommMonoid
Submodule.addSubmonoidClass
Equiv.instEquivLike
Equiv.symm
decompose
β€”Submodule.addSubmonoidClass
RingHomInvPair.ids
decomposeLinearEquiv_symm_comp_lof πŸ“–mathematicalβ€”LinearMap.comp
Submodule
SetLike.instMembership
Submodule.setLike
DirectSum
Submodule.addCommMonoid
instAddCommMonoidDirectSum
Submodule.module
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.symm
decomposeLinearEquiv
lof
Submodule.subtype
β€”Submodule.addSubmonoidClass
LinearMap.ext
RingHomCompTriple.ids
RingHomInvPair.ids
decompose_symm_of
decompose_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidDirectSum
β€”map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
β€”decompose_symm_of
Equiv.apply_symm_apply
decompose_lhom_ext πŸ“–β€”LinearMap.comp
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.subtype
β€”β€”Submodule.addSubmonoidClass
RingHomCompTriple.ids
LinearMap.ext
RingHomInvPair.ids
Function.Surjective.forall
LinearEquiv.surjective
linearMap_ext
LinearMap.comp.congr_simp
decomposeLinearEquiv_symm_comp_lof
DFunLike.congr_fun
decompose_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
AddCommGroup.toAddCommMonoid
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
EquivLike.toFunLike
Equiv.instEquivLike
decompose
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
addCommGroupSetLike
β€”AddSubgroupClass.toAddSubmonoidClass
map_neg
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_of_mem πŸ“–mathematicalSetLike.instMembershipDFunLike.coe
Equiv
DirectSum
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
β€”decompose_coe
decompose_of_mem_ne πŸ“–mathematicalSetLike.instMembershipDFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.instDFunLike
Equiv
DirectSum
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
β€”decompose_of_mem
of_eq_of_ne
ZeroMemClass.coe_zero
decompose_of_mem_same πŸ“–mathematicalSetLike.instMembershipDFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.instDFunLike
Equiv
DirectSum
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
β€”decompose_of_mem
of_eq_same
decompose_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
Submodule
SetLike.instMembership
Submodule.setLike
AddSubmonoidClass.toAddCommMonoid
Submodule.addSubmonoidClass
EquivLike.toFunLike
Equiv.instEquivLike
decompose
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instAddCommMonoidDirectSum
instModule
Submodule.module
β€”Submodule.addSubmonoidClass
map_smul
RingHomInvPair.ids
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
decompose_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
AddCommGroup.toAddCommMonoid
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
EquivLike.toFunLike
Equiv.instEquivLike
decompose
SubNegMonoid.toSub
addCommGroupSetLike
β€”AddSubgroupClass.toAddSubmonoidClass
map_sub
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_sum πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
Finset.sum
instAddCommMonoidDirectSum
β€”map_sum
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_symm_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
decompose
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidDirectSum
β€”map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_symm_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
AddCommGroup.toAddCommMonoid
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
decompose
AddSubgroupClass.toAddCommGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
addCommGroupSetLike
β€”AddSubgroupClass.toAddSubmonoidClass
map_neg
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_symm_of πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
decompose
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
β€”coeAddMonoidHom_of
decompose_symm_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
AddCommGroup.toAddCommMonoid
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
decompose
AddSubgroupClass.toAddCommGroup
SubNegMonoid.toSub
addCommGroupSetLike
β€”AddSubgroupClass.toAddSubmonoidClass
map_sub
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_symm_sum πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
decompose
Finset.sum
instAddCommMonoidDirectSum
β€”map_sum
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_symm_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
decompose
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
β€”map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
decompose_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
β€”map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
degree_eq_of_mem_mem πŸ“–β€”SetLike.instMembershipβ€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
decompose_of_mem_same
decompose_of_mem_ne
instSubsingletonDecomposition πŸ“–mathematicalβ€”Decompositionβ€”Function.LeftInverse.eq_rightInverse
sum_support_decompose πŸ“–mathematicalβ€”Finset.sum
DFinsupp.support
SetLike.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
DirectSum
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
decompose
DFinsupp
DFinsupp.instDFunLike
β€”AddSubmonoidClass.toZeroMemClass
Equiv.symm_apply_apply
sum_support_of
decompose_symm_sum
Finset.sum_congr
decompose_symm_of

DirectSum.AddSubmonoidClass.IsHomogeneous

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”DirectSum.SetLike.IsHomogeneous
SetLike.instMembership
β€”β€”SetLike.ext
mem_iff
mem_iff πŸ“–mathematicalDirectSum.SetLike.IsHomogeneousSetLike.instMembership
DFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.instDFunLike
Equiv
DirectSum
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
DirectSum.decompose
β€”AddSubmonoidClass.toZeroMemClass
DirectSum.sum_support_decompose
sum_mem

DirectSum.Decomposition

Definitions

NameCategoryTheorems
decompose' πŸ“–CompOp
7 mathmath: decompose'_eq, MvPolynomial.weightedDecomposition.decompose'_apply, MvPolynomial.decomposition.decompose'_apply, MvPolynomial.weightedDecomposition.decompose'_eq, left_inv, right_inv, MvPolynomial.decomposition.decompose'_eq
ofAddHom πŸ“–CompOpβ€”
ofLinearMap πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
decompose'_eq πŸ“–mathematicalβ€”decompose'
DFunLike.coe
Equiv
DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
DirectSum.decompose
β€”β€”
inductionOn πŸ“–β€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
DirectSum.IsInternal.addSubmonoid_iSup_eq_top
isInternal
AddSubmonoid.instAddSubmonoidClass
Equiv.left_inv
Equiv.right_inv
AddSubmonoid.iSup_induction
isInternal πŸ“–mathematicalβ€”DirectSum.IsInternalβ€”Function.RightInverse.injective
right_inv
Function.LeftInverse.surjective
left_inv
left_inv πŸ“–mathematicalβ€”DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
DirectSum.coeAddMonoidHom
decompose'
β€”β€”
right_inv πŸ“–mathematicalβ€”DirectSum
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
DirectSum.coeAddMonoidHom
decompose'
β€”β€”

DirectSum.IsInternal

Definitions

NameCategoryTheorems
chooseDecomposition πŸ“–CompOpβ€”

DirectSum.SetLike

Definitions

NameCategoryTheorems
IsHomogeneous πŸ“–MathDef
6 mathmath: IsHomogeneous.subsemiringClosure, Subsemiring.isHomogeneous_iff_subset_iInter, Subsemiring.isHomogeneous_iff_forall_subset, HomogeneousSubsemiring.isHomogeneous, HomogeneousSubsemiring.is_homogeneous', IsHomogeneous.subsemiringClosure_of_isHomogeneousElem

---

← Back to Index