Documentation Verification Report

Ring

πŸ“ Source: Mathlib/Algebra/DirectSum/Ring.lean

Statistics

MetricCount
DefinitionsdirectSumGCommRing, directSumGCommSemiring, GCommRing, toGCommSemiring, toGRing, GCommSemiring, toGCommMonoid, toGSemiring, GNonUnitalNonAssocSemiring, toGMul, GRing, intCast, toGSemiring, GSemiring, gnpow, natCast, toGMonoid, toGNonUnitalNonAssocSemiring, toGOne, commRing, commSemiring, nonUnitalNonAssocRing, nonUnitalNonAssocSemiring, semiring, smulWithZero, commRing, commSemiring, gMulHom, instIntCastOfNat, instMul, instNatCast, instNatCastOfNat, instNonUnitalNonAssocSemiring, instOne, liftRingHom, mulHom, nonAssocRing, ofZeroRingHom, semiring, toSemiring, directSumGNonUnitalNonAssocSemiring, directSumGRing, directSumGSemiring
43
Theoremsmul_comm, mul_comm, add_mul, mul_add, mul_zero, zero_mul, intCast_negSucc_ofNat, intCast_ofNat, gnpow_succ', gnpow_zero', mul_assoc, mul_one, natCast_succ, natCast_zero, one_mul, gMulHom_apply_apply, liftRingHom_apply, liftRingHom_symm_apply_coe, list_prod_ofFn_of_eq_dProd, mulHom_apply, mulHom_of_of, mul_eq_dfinsuppSum, mul_eq_sum_support_ghas_mul, ofList_dProd, ofPow, of_eq_of_gradedMonoid_eq, of_intCast, of_mul_of, of_natCast, of_zero_mul, of_zero_ofNat, of_zero_one, of_zero_pow, of_zero_smul, one_def, ringHom_ext, ringHom_ext', ringHom_ext'_iff, toSemiring_apply, toSemiring_coe_addMonoidHom, toSemiring_of
41
Total84

CommRing

Definitions

NameCategoryTheorems
directSumGCommRing πŸ“–CompOpβ€”

CommSemiring

Definitions

NameCategoryTheorems
directSumGCommSemiring πŸ“–CompOpβ€”

DirectSum

Definitions

NameCategoryTheorems
GCommRing πŸ“–CompDataβ€”
GCommSemiring πŸ“–CompDataβ€”
GNonUnitalNonAssocSemiring πŸ“–CompDataβ€”
GRing πŸ“–CompDataβ€”
GSemiring πŸ“–CompDataβ€”
commRing πŸ“–CompOpβ€”
commSemiring πŸ“–CompOp
4 mathmath: finsetProd_apply_eq_zero, multisetProd_apply_eq_zero', multisetProd_apply_eq_zero, finsetProd_apply_eq_zero'
gMulHom πŸ“–CompOp
1 mathmath: gMulHom_apply_apply
instIntCastOfNat πŸ“–CompOp
1 mathmath: of_intCast
instMul πŸ“–CompOp
36 mathmath: mul_apply_eq_zero, coe_of_mul_apply_aux, qExpansion_of_mul, ExteriorAlgebra.GradedAlgebra.ΞΉ_sq_zero, coe_of_mul_apply_add, of_zero_smul, of_mul_of, coe_mul_of_apply_of_not_le, AddMonoidAlgebra.toDirectSum_mul, of_zero_mul, coe_mul_apply, toAddMonoidAlgebra_mul, listProd_apply_eq_zero', coe_of_mul_apply_of_not_le, mulHom_apply, coe_mul_of_apply_of_mem_zero, coe_mul_of_apply_aux, decompose_symm_mul, coe_mul_of_apply_add, coe_of_mul_apply_of_le, coe_mul_of_apply_of_le, coe_of_mul_apply_of_mem_zero, mul_eq_sum_support_ghas_mul, coe_mul_of_apply, mul_eq_dfinsuppSum, TensorProduct.tmul_of_gradedMul_of_tmul, coe_mul_apply_eq_dfinsuppSum, listProd_apply_eq_zero, ofList_dProd, coe_mul_apply_eq_sum_antidiagonal, decompose_mul, list_prod_ofFn_of_eq_dProd, addMonoidAlgebraRingEquivDirectSum_apply, addMonoidAlgebraRingEquivDirectSum_symm_apply, CliffordAlgebra.GradedAlgebra.ΞΉ_sq_scalar, coe_of_mul_apply
instNatCast πŸ“–CompOp
3 mathmath: AddMonoidAlgebra.toDirectSum_natCast, toAddMonoidAlgebra_natCast, of_natCast
instNatCastOfNat πŸ“–CompOp
1 mathmath: of_natCast
instNonUnitalNonAssocSemiring πŸ“–CompOp
4 mathmath: TensorProduct.gradedMul_def, ExteriorAlgebra.GradedAlgebra.ΞΉ_sq_zero, addMonoidAlgebraRingEquivDirectSum_apply, addMonoidAlgebraRingEquivDirectSum_symm_apply
instOne πŸ“–CompOp
14 mathmath: TensorProduct.gradedComm_tmul_one, toAddMonoidAlgebra_one, one_def, decompose_symm_one, TensorProduct.algebraMap_gradedMul, listProd_apply_eq_zero', TensorProduct.gradedMul_algebraMap, TensorProduct.gradedComm_one_tmul, listProd_apply_eq_zero, ofList_dProd, decompose_one, list_prod_ofFn_of_eq_dProd, of_zero_one, AddMonoidAlgebra.toDirectSum_one
liftRingHom πŸ“–CompOp
2 mathmath: liftRingHom_symm_apply_coe, liftRingHom_apply
mulHom πŸ“–CompOp
2 mathmath: mulHom_of_of, mulHom_apply
nonAssocRing πŸ“–CompOpβ€”
ofZeroRingHom πŸ“–CompOpβ€”
semiring πŸ“–CompOp
51 mathmath: TensorAlgebra.ofDirectSum_of_tprod, ExteriorAlgebra.GradedAlgebra.liftΞΉ_eq, qExpansionRingHom_apply, decomposeAlgEquiv_symm_apply, TensorAlgebra.toDirectSum_tensorPower_tprod, GradedTensorProduct.auxEquiv_one, TensorProduct.gradedComm_algebraMap_tmul, TensorAlgebra.toDirectSum_ofDirectSum, algebraMap_toAddMonoid_hom, AddMonoidAlgebra.decomposeAux_coe, ofPow, TensorAlgebra.equivDirectSum_apply, GradedTensorProduct.auxEquiv_symm_one, toAlgebra_apply, TensorProduct.gradedComm_algebraMap, algebraMap_apply, TensorProduct.algebraMap_gradedMul, addMonoidAlgebraAlgEquivDirectSum_symm_apply, TensorProduct.gradedComm_one, coeAlgHom_of, decompose_symm_algebraMap, TensorAlgebra.ofDirectSum_toDirectSum, AddMonoidAlgebra.toDirectSum_pow, TensorProduct.gradedMul_one, decompose_algebraMap, algHom_ext'_iff, toSemiring_apply, coeRingHom_of, TensorAlgebra.toDirectSum_comp_ofDirectSum, toSemiring_of, decomposeAlgEquiv_apply, TensorProduct.gradedComm_tmul_algebraMap, of_zero_pow, ringHom_ext'_iff, TensorAlgebra.equivDirectSum_symm_apply, TensorProduct.gradedMul_algebraMap, liftRingHom_symm_apply_coe, TensorProduct.tmul_of_gradedMul_of_tmul, Submodule.iSup_eq_toSubmodule_range, AddMonoidAlgebra.decomposeAux_single, toSemiring_coe_addMonoidHom, toAddMonoidAlgebra_pow, AddMonoidAlgebra.decomposeAux_eq_decompose, liftRingHom_apply, CliffordAlgebra.GradedAlgebra.lift_ΞΉ_eq, TensorAlgebra.toDirectSum_ΞΉ, TensorProduct.one_gradedMul, TensorAlgebra.ofDirectSum_comp_toDirectSum, CliffordAlgebra.GradedAlgebra.ΞΉ_sq_scalar, addMonoidAlgebraAlgEquivDirectSum_apply, qExpansion_of_pow
toSemiring πŸ“–CompOp
5 mathmath: toAlgebra_apply, toSemiring_apply, toSemiring_of, toSemiring_coe_addMonoidHom, liftRingHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
gMulHom_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddMonoidHom.instAddCommMonoid
gMulHom
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
β€”β€”
liftRingHom_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
GradedMonoid.GOne.one
GradedMonoid.GMonoid.toGOne
GSemiring.toGMonoid
AddMonoidWithOne.toOne
RingHom
DirectSum
semiring
EquivLike.toFunLike
Equiv.instEquivLike
liftRingHom
toSemiring
β€”β€”
liftRingHom_symm_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
GradedMonoid.GOne.one
GradedMonoid.GMonoid.toGOne
GSemiring.toGMonoid
AddMonoidWithOne.toOne
Equiv
RingHom
DirectSum
semiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
liftRingHom
AddMonoidHom.comp
AddMonoidHomClass.toAddMonoidHom
RingHom.instFunLike
of
β€”β€”
list_prod_ofFn_of_eq_dProd πŸ“–mathematicalβ€”DirectSum
instMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GSemiring.toGNonUnitalNonAssocSemiring
instOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
GradedMonoid.GMonoid.toGOne
GSemiring.toGMonoid
DFunLike.coe
AddMonoidHom
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
List.dProdIndex
List.dProd
β€”List.ofFn_eq_map
ofList_dProd
mulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
AddMonoidHom.instAddCommMonoid
mulHom
instMul
β€”β€”
mulHom_of_of πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
AddMonoidHom.instAddCommMonoid
mulHom
of
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
β€”toAddMonoid_of
mul_eq_dfinsuppSum πŸ“–mathematicalβ€”DirectSum
instMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GSemiring.toGNonUnitalNonAssocSemiring
DFinsupp.sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
of
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
β€”mulHom.eq_1
toAddMonoid.eq_1
DFinsupp.liftAddHom_apply
DFinsupp.sumAddHom_apply
AddMonoidHom.dfinsuppSum_apply
GNonUnitalNonAssocSemiring.mul_zero
GNonUnitalNonAssocSemiring.mul_add
mul_eq_sum_support_ghas_mul πŸ“–mathematicalβ€”DirectSum
instMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GSemiring.toGNonUnitalNonAssocSemiring
Finset.sum
instAddCommMonoidDirectSum
SProd.sprod
Finset
Finset.instSProd
DFinsupp.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
of
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
DFinsupp
DFinsupp.instDFunLike
β€”mul_eq_dfinsuppSum
Finset.sum_congr
Finset.sum_product
ofList_dProd πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
List.dProdIndex
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
List.dProd
GSemiring.toGMonoid
instMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GSemiring.toGNonUnitalNonAssocSemiring
instOne
AddZero.toZero
GradedMonoid.GMonoid.toGOne
β€”of_mul_of
ofPow πŸ“–mathematicalβ€”DirectSum
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
AddMonoid.toNatSMul
GradedMonoid.GMonoid.gnpow
GSemiring.toGMonoid
β€”of_eq_of_gradedMonoid_eq
pow_zero
pow_succ
of_mul_of
of_eq_of_gradedMonoid_eq πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
β€”DFinsupp.single_eq_of_sigma_eq
of_intCast πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DirectSum
AddCommGroup.toAddCommMonoid
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
instIntCastOfNat
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
ring
β€”β€”
of_mul_of πŸ“–mathematicalβ€”DirectSum
instMul
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
β€”mulHom_of_of
of_natCast πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DirectSum
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
instNatCastOfNat
instNatCast
β€”β€”
of_zero_mul πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
DirectSum
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
GradedMonoid.GradeZero.mul
GNonUnitalNonAssocSemiring.toGMul
AddZero.toAdd
instMul
β€”of_zero_smul
of_zero_ofNat πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DirectSum
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
β€”of_natCast
of_zero_one πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
GradedMonoid.GradeZero.one
instOne
β€”β€”
of_zero_pow πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DirectSum
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
Monoid.toNatPow
GradedMonoid.GradeZero.monoid
GSemiring.toGMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”pow_zero
of_zero_one
pow_succ
of_zero_mul
of_zero_smul πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
AddZero.toZero
GradedMonoid.GradeZero.smul
GNonUnitalNonAssocSemiring.toGMul
AddZero.toAdd
instMul
β€”of_eq_of_gradedMonoid_eq
GradedMonoid.mk_zero_smul
of_mul_of
one_def πŸ“–mathematicalβ€”DirectSum
instOne
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
GradedMonoid.GOne.one
β€”β€”
ringHom_ext πŸ“–β€”DFunLike.coe
RingHom
DirectSum
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
of
β€”β€”ringHom_ext'
AddMonoidHom.ext
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
ringHom_ext' πŸ“–β€”AddMonoidHom.comp
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHomClass.toAddMonoidHom
RingHom
semiring
RingHom.instFunLike
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
of
β€”β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
RingHom.coe_addMonoidHom_injective
addHom_ext'
ringHom_ext'_iff πŸ“–mathematicalβ€”AddMonoidHom.comp
DirectSum
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidDirectSum
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHomClass.toAddMonoidHom
RingHom
semiring
RingHom.instFunLike
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
of
β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
ringHom_ext'
toSemiring_apply πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
GradedMonoid.GOne.one
GradedMonoid.GMonoid.toGOne
GSemiring.toGMonoid
AddMonoidWithOne.toOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
GSemiring.toGNonUnitalNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
RingHom
DirectSum
semiring
RingHom.instFunLike
toSemiring
instAddCommMonoidDirectSum
NonUnitalNonAssocSemiring.toAddCommMonoid
toAddMonoid
β€”β€”
toSemiring_coe_addMonoidHom πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
GradedMonoid.GOne.one
GradedMonoid.GMonoid.toGOne
GSemiring.toGMonoid
AddMonoidWithOne.toOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
GSemiring.toGNonUnitalNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidHomClass.toAddMonoidHom
DirectSum
RingHom
semiring
RingHom.instFunLike
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
toSemiring
toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
toSemiring_of πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
GradedMonoid.GOne.one
GradedMonoid.GMonoid.toGOne
GSemiring.toGMonoid
AddMonoidWithOne.toOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GradedMonoid.GMul.mul
GNonUnitalNonAssocSemiring.toGMul
GSemiring.toGNonUnitalNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
RingHom
DirectSum
semiring
RingHom.instFunLike
toSemiring
instAddCommMonoidDirectSum
of
β€”toAddMonoid_of

DirectSum.GCommRing

Definitions

NameCategoryTheorems
toGCommSemiring πŸ“–CompOpβ€”
toGRing πŸ“–CompOp
5 mathmath: qExpansionRingHom_apply, qExpansion_of_mul, ModularForm.levelOne_weight_zero_rank_one, mul_comm, qExpansion_of_pow

Theorems

NameKindAssumesProvesValidatesDepends On
mul_comm πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
DirectSum.GSemiring.toGNonUnitalNonAssocSemiring
DirectSum.GRing.toGSemiring
toGRing
β€”β€”

DirectSum.GCommSemiring

Definitions

NameCategoryTheorems
toGCommMonoid πŸ“–CompOpβ€”
toGSemiring πŸ“–CompOp
1 mathmath: mul_comm

Theorems

NameKindAssumesProvesValidatesDepends On
mul_comm πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
DirectSum.GSemiring.toGNonUnitalNonAssocSemiring
toGSemiring
β€”β€”

DirectSum.GNonUnitalNonAssocSemiring

Definitions

NameCategoryTheorems
toGMul πŸ“–CompOp
21 mathmath: DirectSum.mulHom_of_of, DirectSum.GSemiring.gnpow_succ', DirectSum.gMulHom_apply_apply, DirectSum.GSemiring.mul_assoc, DirectSum.of_zero_smul, DirectSum.of_mul_of, mul_zero, DirectSum.of_zero_mul, DirectSum.GCommRing.mul_comm, add_mul, DirectSum.GAlgebra.map_mul, DirectSum.GSemiring.one_mul, DirectSum.GCommSemiring.mul_comm, DirectSum.GAlgebra.smul_def, DirectSum.mul_eq_sum_support_ghas_mul, DirectSum.mul_eq_dfinsuppSum, DirectSum.GAlgebra.commutes, zero_mul, mul_add, DirectSum.GSemiring.mul_one, DirectSum.gMulLHom_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_mul πŸ“–mathematicalβ€”GradedMonoid.GMul.mul
toGMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
mul_add πŸ“–mathematicalβ€”GradedMonoid.GMul.mul
toGMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
mul_zero πŸ“–mathematicalβ€”GradedMonoid.GMul.mul
toGMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
zero_mul πŸ“–mathematicalβ€”GradedMonoid.GMul.mul
toGMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”

DirectSum.GRing

Definitions

NameCategoryTheorems
intCast πŸ“–CompOp
2 mathmath: intCast_ofNat, intCast_negSucc_ofNat
toGSemiring πŸ“–CompOp
13 mathmath: qExpansionRingHom_apply, TensorProduct.gradedMul_def, qExpansion_of_mul, ModularForm.levelOne_weight_zero_rank_one, TensorProduct.algebraMap_gradedMul, intCast_ofNat, DirectSum.GCommRing.mul_comm, TensorProduct.gradedMul_one, TensorProduct.gradedMul_algebraMap, TensorProduct.tmul_of_gradedMul_of_tmul, TensorProduct.one_gradedMul, intCast_negSucc_ofNat, qExpansion_of_pow

Theorems

NameKindAssumesProvesValidatesDepends On
intCast_negSucc_ofNat πŸ“–mathematicalβ€”intCast
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DirectSum.GSemiring.natCast
AddCommGroup.toAddCommMonoid
toGSemiring
β€”β€”
intCast_ofNat πŸ“–mathematicalβ€”intCast
DirectSum.GSemiring.natCast
AddCommGroup.toAddCommMonoid
toGSemiring
β€”β€”

DirectSum.GSemiring

Definitions

NameCategoryTheorems
gnpow πŸ“–CompOp
2 mathmath: gnpow_succ', gnpow_zero'
natCast πŸ“–CompOp
4 mathmath: DirectSum.GRing.intCast_ofNat, natCast_zero, natCast_succ, DirectSum.GRing.intCast_negSucc_ofNat
toGMonoid πŸ“–CompOp
11 mathmath: DirectSum.ofPow, TensorProduct.algebraMap_gradedMul, GradedMonoid.smulCommClass_right, DirectSum.of_zero_pow, TensorProduct.gradedMul_algebraMap, DirectSum.liftRingHom_symm_apply_coe, DirectSum.ofList_dProd, GradedMonoid.isScalarTower_right, DirectSum.GAlgebra.map_one, DirectSum.list_prod_ofFn_of_eq_dProd, DirectSum.liftRingHom_apply
toGNonUnitalNonAssocSemiring πŸ“–CompOp
18 mathmath: gnpow_succ', TensorProduct.gradedMul_def, mul_assoc, qExpansion_of_mul, ModularForm.levelOne_weight_zero_rank_one, DirectSum.GCommRing.mul_comm, DirectSum.GAlgebra.map_mul, one_mul, DirectSum.GCommSemiring.mul_comm, DirectSum.GAlgebra.smul_def, DirectSum.mul_eq_sum_support_ghas_mul, DirectSum.mul_eq_dfinsuppSum, TensorProduct.tmul_of_gradedMul_of_tmul, DirectSum.ofList_dProd, DirectSum.GAlgebra.commutes, DirectSum.list_prod_ofFn_of_eq_dProd, mul_one, DirectSum.gMulLHom_apply_apply
toGOne πŸ“–CompOp
4 mathmath: gnpow_zero', one_mul, natCast_succ, mul_one

Theorems

NameKindAssumesProvesValidatesDepends On
gnpow_succ' πŸ“–mathematicalβ€”AddMonoid.toNatSMul
gnpow
GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
toGNonUnitalNonAssocSemiring
β€”β€”
gnpow_zero' πŸ“–mathematicalβ€”AddMonoid.toNatSMul
gnpow
GradedMonoid
GradedMonoid.GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
toGOne
β€”β€”
mul_assoc πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
toGNonUnitalNonAssocSemiring
β€”β€”
mul_one πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
toGNonUnitalNonAssocSemiring
GradedMonoid.GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
toGOne
β€”β€”
natCast_succ πŸ“–mathematicalβ€”natCast
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
GradedMonoid.GOne.one
toGOne
β€”β€”
natCast_zero πŸ“–mathematicalβ€”natCast
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
one_mul πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
DirectSum.GNonUnitalNonAssocSemiring.toGMul
toGNonUnitalNonAssocSemiring
GradedMonoid.GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
toGOne
β€”β€”

DirectSum.GradeZero

Definitions

NameCategoryTheorems
commRing πŸ“–CompOpβ€”
commSemiring πŸ“–CompOpβ€”
nonUnitalNonAssocRing πŸ“–CompOpβ€”
nonUnitalNonAssocSemiring πŸ“–CompOp
1 mathmath: ModularForm.levelOne_weight_zero_rank_one
semiring πŸ“–CompOpβ€”
smulWithZero πŸ“–CompOpβ€”

NonUnitalNonAssocSemiring

Definitions

NameCategoryTheorems
directSumGNonUnitalNonAssocSemiring πŸ“–CompOp
4 mathmath: AddMonoidAlgebra.toDirectSum_mul, DirectSum.toAddMonoidAlgebra_mul, addMonoidAlgebraRingEquivDirectSum_apply, addMonoidAlgebraRingEquivDirectSum_symm_apply

Ring

Definitions

NameCategoryTheorems
directSumGRing πŸ“–CompOp
2 mathmath: AddMonoidAlgebra.toDirectSum_intCast, DirectSum.toAddMonoidAlgebra_intCast

Semiring

Definitions

NameCategoryTheorems
directSumGSemiring πŸ“–CompOp
7 mathmath: Algebra.directSumGAlgebra_toFun_apply, AddMonoidAlgebra.toDirectSum_natCast, addMonoidAlgebraAlgEquivDirectSum_symm_apply, DirectSum.toAddMonoidAlgebra_natCast, AddMonoidAlgebra.toDirectSum_pow, DirectSum.toAddMonoidAlgebra_pow, addMonoidAlgebraAlgEquivDirectSum_apply

---

← Back to Index