Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Divisibility/Basic.lean

Statistics

MetricCount
DefinitionsDecompositionMonoid, IsPrimal, semigroupDvd
3
Theoremsprimal, mul_left, mul_right, pow, trans, elim, elim_left, intro, intro_left, dvd, dvd_cancel_left, decompositionMonoid_iff, dvd_def, dvd_iff_exists_eq_mul_left, dvd_iff_exists_eq_mul_right, dvd_mul, dvd_mul_left, dvd_mul_of_dvd_left, dvd_mul_of_dvd_right, dvd_mul_right, dvd_of_eq, dvd_of_mul_left_dvd, dvd_of_mul_left_eq, dvd_of_mul_right_dvd, dvd_of_mul_right_eq, dvd_pow, dvd_pow_self, dvd_refl, dvd_rfl, dvd_trans, exists_dvd_and_dvd_of_dvd_mul, exists_eq_mul_left_of_dvd, exists_eq_mul_right_of_dvd, instIsTransDvd, instReflDvd_mathlib, mul_dvd_mul, mul_dvd_mul_left, mul_dvd_mul_right, one_dvd, pow_dvd_pow, pow_dvd_pow_of_dvd, pow_dvd_pow_of_dvd_of_le
42
Total45

DecompositionMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
primal πŸ“–mathematicalβ€”IsPrimalβ€”β€”

Dvd

Theorems

NameKindAssumesProvesValidatesDepends On
elim πŸ“–β€”semigroupDvdβ€”β€”β€”
elim_left πŸ“–β€”semigroupDvd
CommSemigroup.toSemigroup
β€”β€”exists_eq_mul_left_of_dvd
intro πŸ“–mathematicalSemigroup.toMulsemigroupDvdβ€”β€”
intro_left πŸ“–mathematicalCommMagma.toMul
CommSemigroup.toCommMagma
semigroupDvd
CommSemigroup.toSemigroup
β€”intro
mul_comm

Dvd.dvd

Theorems

NameKindAssumesProvesValidatesDepends On
mul_left πŸ“–mathematicalsemigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”dvd_mul_of_dvd_right
mul_right πŸ“–mathematicalsemigroupDvdSemigroup.toMulβ€”dvd_mul_of_dvd_left
pow πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
Monoid.toNatPowβ€”dvd_pow
trans πŸ“–β€”semigroupDvdβ€”β€”dvd_trans

Eq

Theorems

NameKindAssumesProvesValidatesDepends On
dvd πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
β€”dvd_of_eq

IsLeftRegular

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_cancel_left πŸ“–mathematicalIsLeftRegular
Semigroup.toMul
semigroupDvdβ€”mul_assoc
mul_dvd_mul_left

(root)

Definitions

NameCategoryTheorems
DecompositionMonoid πŸ“–CompData
9 mathmath: instDecompositionMonoidProd, decompositionMonoid_iff, Associates.decompositionMonoid_iff, Associates.instDecompositionMonoid, IsArtinianRing.instDecompositionMonoid, IsArtinianRing.instDecompositionMonoidPolynomial, instDecompositionMonoidOfNonemptyGCDMonoid, UniqueFactorizationMonoid.instDecompositionMonoid, MulEquiv.decompositionMonoid
IsPrimal πŸ“–MathDef
6 mathmath: Prime.isPrimal, decompositionMonoid_iff, isPrimal_zero, Associates.isPrimal_mk, DecompositionMonoid.primal, IsUnit.isPrimal
semigroupDvd πŸ“–CompOp
528 mathmath: IsAlgebraic.exists_nonzero_dvd, EuclideanDomain.gcd_eq_left, pow_multiplicity_dvd, Irreducible.not_dvd_isUnit, MvPolynomial.dvd_monomial_one_iff_exists, dvd_add_self_left, IsDedekindDomain.differentIdeal_dvd_map_differentIdeal, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_ne_two', Ideal.dvd_iff_le, IsDedekindDomain.HeightOneSpectrum.equivPrimesOver_apply, Ideal.span_pair_eq_span_right_iff_dvd, lcm_dvd_lcm_mul_right, normalize_dvd_iff, IsLocalization.Away.algebraMap_isUnit_iff, Finset.prod_dvd_prod_of_subset, IsUnit.dvd_mul_left, Polynomial.pow_rootMultiplicity_dvd, dvd_zero, IsAdjoinRoot.mem_ker_map, gcd_dvd_gcd_mul_right, RatFunc.num_div_dvd, FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_sq_mul_b, span_singleton_dvd_span_singleton_iff_dvd, UniqueFactorizationMonoid.mem_normalizedFactors_iff, IsPrimitiveRoot.minpoly_dvd_pow_mod, abs_dvd, Polynomial.cyclotomic_dvd_geom_sum_of_dvd, Ordinal.antisymm, FermatLastTheoremForThreeGen.Solution.lambda_dvd_a_add_eta_sq_mul_b, emultiplicity_eq_emultiplicity_iff, idealFactorsEquivOfQuotEquiv_mem_normalizedFactors_of_mem_normalizedFactors, Polynomial.dvd_iff_content_dvd_content_and_primPart_dvd_primPart, Subfield.relrank_dvd_of_le_left, PreValuationRing.iff_dvd_total, instIsTransDvd, RatFunc.denom_mul_dvd, multiplicity_eq_zero, Finset.gcd_dvd, Irreducible.dvd_comm, MvPolynomial.exists_dvd_map_of_isAlgebraic, Prime.coprime_iff_not_dvd, ValuationRing.TFAE, Polynomial.dvd_iterate_derivative_pow, Associated.dvd, Ideal.norm_dvd_iff, dvd_def, map_dvd_iff_dvd_symm, UniqueFactorizationMonoid.isRadical_radical, abs_dvd_abs, Polynomial.not_dvd_of_degree_lt, dvd_sub_self_left, FermatLastTheoremForThreeGen.lambda_pow_four_dvd_c_cube, Ideal.liesOver_iff_dvd_map, Associates.dvd_of_mk_le_mk, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, Polynomial.exists_monic_irreducible_factor, PrimeMultiset.prod_dvd_prod, Finset.dvd_prod_of_mem, Algebra.dvd_algebraMap_intNorm_self, emultiplicity_lt_iff_not_dvd, finprod_mem_dvd, idealFactorsFunOfQuotHom_comp, EuclideanDomain.divRadical_dvd_self, Polynomial.aeval_pow_two_pow_dvd_aeval_iterate_newtonMap, gcd_dvd_gcd_mul_left_right, FermatLastTheoremForThreeGen.Solution.hab, map_dvd_iff, dvd_of_mul_right_eq, EuclideanDomain.dvd_lcm_right, PadicInt.norm_lt_one_iff_dvd, Polynomial.pow_rootMultiplicity_not_dvd, QuadraticAlgebra.algebraMap_dvd_iff, Dvd.intro, Prime.dvd_mul, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_ne_two, Prod.mk_dvd_mk, Matrix.minpoly_dvd_charpoly, Polynomial.dvd_comp_X_add_C_iff, Polynomial.dvd_comp_C_mul_X_add_C_iff, IsDiscreteValuationRing.dvd_of_toWithBotNat_le_toWithBotNat, UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors, dvd_or_isCoprime, Multiset.prod_dvd_prod_of_le, generator_maximal_submoduleImage_dvd, dvd_of_emultiplicity_pos, dvd_lcm_right, Irreducible.isRelPrime_iff_not_dvd, MvPowerSeries.X_pow_dvd_iff, MvPolynomial.monomial_one_dvd_iff_modMonomial_eq_zero, Submodule.IsPrincipal.contentIdeal_le_span_iff_dvd, PNat.factorMultiset_le_iff, Polynomial.Monic.not_dvd_of_natDegree_lt, Submodule.IsPrincipal.contentIdeal_generator_dvd_coeff, mul_dvd_mul_iff_right, ONote.split_dvd, Polynomial.factor_dvd_of_natDegree_ne_zero, Associates.out_dvd_iff, dvd_add_self_right, AdjoinRoot.mk_eq_mk, Commute.pow_dvd_pow_of_add_pow_eq_zero, Multiset.lcm_mono, Associates.mk_le_mk_iff_dvd, Multiset.prod_X_sub_C_dvd_iff_le_roots, divRadical_dvd_derivative, zero_dvd_iff, Ordinal.dvd_of_mod_eq_zero, FiniteMultiplicity.exists_eq_pow_mul_and_not_dvd, Commute.pow_dvd_pow_of_sub_pow_eq_zero, Units.coe_dvd, Polynomial.X_pow_sub_one_dvd_prod_cyclotomic, Polynomial.dvd_C_mul, Polynomial.Monic.irreducible_iff_lt_natDegree_lt, pow_dvd_pow, Int.cast_dvd_cast, dvd_pow_pow_sub_self_of_dvd, Finset.lcm_dvd_prod, MvPolynomial.X_dvd_X, normalize_eq_normalize_iff, PrimeMultiset.prod_dvd_iff', Polynomial.rootMultiplicity_eq_natFind_of_ne_zero, squarefree_iff_irreducible_sq_not_dvd_of_exists_irreducible, DualNumber.fst_eq_zero_iff_eps_dvd, nonZeroDivisors_dvd_iff_dvd_coe, PNat.Prime.not_dvd_one, Polynomial.prod_multiset_X_sub_C_dvd, PNat.dvd_lcm_right, PNat.gcd_dvd_right, dvd_cancel_right_mem_nonZeroDivisors, lcm_eq_left_iff, dvd_of_mul_left_eq, Units.mul_right_dvd, Ideal.span_singleton_le_span_singleton, IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_dvd, minpoly.IsIntegrallyClosed.isIntegral_iff_leadingCoeff_dvd, Ordinal.opow_dvd_opow, squarefree_iff_irreducible_sq_not_dvd_of_ne_zero, dvd_and_not_dvd_iff, Eq.dvd, Associates.dvd_eq_le, emultiplicity_le_emultiplicity_iff, IsUnit.scaleRoots_dvd_iff, Valuation.Integers.dvd_of_le, MvPolynomial.X_dvd_monomial, isRadical_iff_squarefree_or_zero, Nat.cast_dvd_cast, Prime.not_dvd_one, minpoly.dvd_iff, DualNumber.isNilpotent_iff_eps_dvd, Cardinal.nat_coe_dvd_iff, Polynomial.resultant_dvd_leadingCoeff_pow, Polynomial.modByMonic_eq_zero_iff_dvd, Ideal.Quotient.eq_zero_iff_dvd, Polynomial.rootMultiplicity_eq_nat_find_of_nonzero, PNat.dvd_one_iff, Polynomial.factor_dvd_of_degree_ne_zero, pi_dvd_iff, IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_dvd, RatFunc.num_dvd, AdjoinRoot.mk_eq_zero, EuclideanDomain.gcd_dvd, PNat.gcd_eq_right_iff_dvd, Polynomial.exists_dvd_map_of_isAlgebraic, Commute.pow_dvd_add_pow_of_pow_eq_zero_left, PNat.count_factorMultiset, LinearMap.minpoly_dvd_charpoly, Polynomial.Monic.not_dvd_of_degree_lt, Multiset.toFinset_prod_dvd_prod, IsDedekindDomain.map_differentIdeal_dvd_differentIdeal, Associates.dvd_of_mem_factors', isRadical_iff_squarefree_of_ne_zero, MvPolynomial.dvd_monomial_iff_exists, Valuation.Integers.le_iff_dvd, self_dvd_abs, emultiplicity_eq_zero, FermatLastTheoremForThreeGen.Solution'.ha, MvPolynomial.X_dvd_mul_iff, Commute.add_pow_dvd_pow_of_pow_eq_zero_left, AddMonoidAlgebra.of'_dvd_iff_modOf_eq_zero, Irreducible.isUnit_gcd_iff, QuadraticAlgebra.coe_dvd_iff_dvd, Submodule.IsPrincipal.generator_submoduleImage_dvd_of_mem, RatFunc.num_inv_dvd, Units.dvd_mul_left, UniqueFactorizationMonoid.dvd_of_normalized_factor, FermatLastTheoremForThreeGen.a_cube_b_cube_congr_one_or_neg_one, Dvd.intro_left, dvd_pow_sub_one_of_dvd, dvd_cancel_right_coe_nonZeroDivisors, Lagrange.X_sub_C_dvd_nodal, IsLocalization.algebraMap_isUnit_iff, lcm_dvd_mul, Irreducible.exists_dvd_monic_irreducible_of_isIntegral, Polynomial.le_rootMultiplicity_iff, MvPolynomial.dvd_X_mul_iff, Ideal.dvd_bot, dvd_sub_comm, IntermediateField.relrank_dvd_of_le_left, IsPrimitiveRoot.minpoly_dvd_expand, zero_isRadical_iff, IsBezout.gcd_dvd_left, minpoly.isRadical, PNat.factorMultiset_le_iff', IsPrimitiveRoot.minpoly_dvd_mod_p, Units.mul_left_dvd, Finset.gcd_mono, odd_sq_dvd_geom_sumβ‚‚_sub, dvd_mul_gcd_iff_dvd_mul, WfDvdMonoid.exists_irreducible_factor, Multiset.dvd_prod, Ordinal.mul_eq_right_iff_opow_omega0_dvd, dvd_generator_iff, isRadical_iff_span_singleton, dvd_cancel_left_mem_nonZeroDivisors, Prime.dvd_prod_iff, Ordinal.dvd_iff_mod_eq_zero, WittVector.dvd_sub_sum_teichmuller_iterateFrobeniusEquiv_coeff, Polynomial.Chebyshev.iterate_derivative_U_eval_one_dvd, EuclideanDomain.lcm_dvd_iff, Polynomial.Chebyshev.iterate_derivative_T_eval_one_dvd, Squarefree.isRadical, UniqueFactorizationMonoid.radical_dvd_radical_iff_primeFactors_subset_primeFactors, Polynomial.X_sub_C_dvd_sub_C_eval, Polynomial.pow_sub_dvd_iterate_derivative_pow, Associates.mem_factors'_iff_dvd, WfDvdMonoid.max_power_factor, MvPolynomial.dvd_smul_X_iff_exists, Polynomial.quadratic_dvd_of_aeval_eq_zero_im_ne_zero, PNat.dvd_iff, Submodule.IsPrincipal.generator_map_dvd_of_mem, gcd_mul_dvd_mul_gcd, den_dvd_of_is_root, Polynomial.dvd_mul_leadingCoeff_inv, Polynomial.Chebyshev.derivative_U_eval_one_dvd, dvd_lcm_left, Commute.sub_dvd_pow_sub_pow, not_dvd_differentIdeal_of_isCoprime_of_isSeparable, IsUnit.dvd, Polynomial.dvd_derivative_iff, lcm_dvd_iff, Polynomial.cyclotomic.dvd_X_pow_sub_one, lcm_dvd_lcm_mul_right_right, Polynomial.primPart_dvd, Polynomial.X_pow_dvd_iff, pow_dvd_iff_le_emultiplicity, Finset.dvd_gcd_iff, Polynomial.IsRoot.dvd_coeff_zero, dvd_differentIdeal_iff, Polynomial.exists_eq_pow_rootMultiplicity_mul_and_not_dvd, Ordinal.opow_dvd_opow_iff, minpoly.dvd_map_of_isScalarTower, Associated.dvd_dvd, dvd_pow_self, Polynomial.Splits.dvd_iff_roots_le_roots, minpoly.isIntegrallyClosed_dvd_iff, Polynomial.sub_dvd_eval_sub, PreTilt.pow_dvd_untiltAux_sub_untiltAux, Algebra.IsUnramifiedAt.not_minpoly_sq_dvd, dvd_iff_emultiplicity_pos, IsDedekindDomain.HeightOneSpectrum.intValuation_lt_one_iff_dvd, PreTilt.pow_dvd_one_untiltAux_sub_one, UniqueFactorizationMonoid.dvd_radical_iff_of_irreducible, idealFactorsEquivOfQuotEquiv_symm, lcm_eq_right_iff, IntermediateField.relrank_dvd_rank_top_of_le, lcm_dvd_lcm_mul_left, Multiset.gcd_mono, dvd_iff_exists_eq_mul_right, MvPolynomial.C_dvd_iff_dvd_coeff, PNat.exists_prime_and_dvd, PrimeMultiset.prod_dvd_iff, Polynomial.C_dvd_iff_dvd_coeff, IntermediateField.relrank_dvd_rank_bot, dvd_mul_left, UniqueFactorizationMonoid.radical_prod_dvd, Zsqrtd.intCast_dvd_intCast, num_dvd_of_is_root, Ideal.span_pair_eq_span_left_iff_dvd, Polynomial.dvd_content_iff_C_dvd, MvPolynomial.X_dvd_iff_modMonomial_eq_zero, Commute.pow_dvd_sub_pow_of_pow_eq_zero_left, GroupWithZero.dvd_iff, Subfield.relrank_dvd_rank_top_of_le, divRadical_dvd_wronskian_right, IsCyclotomicExtension.Rat.Three.lambda_dvd_or_dvd_sub_one_or_dvd_add_one, Polynomial.IsPrimitive.Int.dvd_iff_map_cast_dvd_map_cast, mul_dvd_mul_iff_left, Polynomial.C_mul_dvd, one_dvd, Polynomial.mem_iff_annIdealGenerator_dvd, EuclideanDomain.gcd_dvd_right, FermatLastTheoremForThreeGen.Solution'.hcdvd, WfDvdMonoid.max_power_factor', Associates.mem_factors_iff_dvd, dvd_differentIdeal_of_not_isSeparable, IsPrimitiveRoot.toInteger_sub_one_dvd_prime, RatFunc.denom_div_dvd, FiniteMultiplicity.multiplicity_lt_iff_not_dvd, Prime.isRadical, Irreducible.dvd_iff_not_isCoprime, prod_dvd_iff, IsUnit.mul_left_dvd, LinearMap.IsReflective.dvd_two_mul, Polynomial.IsPrimitive.dvd_primPart_iff_dvd, pow_dvd_of_le_emultiplicity, PNat.dvd_lcm_left, Prime.dvd_pow_iff_dvd, dvd_dvd_iff_associated, multiplicity_ne_zero, Even.two_dvd, minpoly.dvd_map_of_isScalarTower', Polynomial.scaleRoots_dvd_iff, MvPolynomial.dvd_monomial_mul_iff_exists, Polynomial.factor_dvd_of_not_isUnit, Num.dvd_iff_mod_eq_zero, RatFunc.denom_inv_dvd, dvd_mul, IsPrimitiveRoot.toInteger_sub_one_dvd_prime', Dvd.dvd.natCast, MvPolynomial.dvd_X_iff_exists, PNat.gcd_dvd_left, Submodule.IsPrincipal.dvd_generator_span_iff, dvd_neg, FermatLastTheoremForThreeGen.Solution'.hb, Irreducible.not_dvd_unit, Ideal.finite_factors, not_dvd_differentIdeal_of_isCoprime, Multiset.dvd_gcd, PNat.dvd_prime, Irreducible.dvd_irreducible_iff_associated, Num.dvd_to_nat, RatFunc.num_mul_dvd, gcd_dvd_gcd_mul_right_right, not_dvd_differentIdeal_iff, Polynomial.Monic.C_dvd_iff_isUnit, FiniteMultiplicity.not_iff_forall, MvPowerSeries.X_dvd_iff, Polynomial.X_dvd_iff, FiniteMultiplicity.multiplicity_eq_iff, UniqueFactorizationMonoid.radical_dvd_self, FiniteMultiplicity.def, Units.dvd_mul_right, RatFunc.num_div_dvd', dvd_coeff_zero_of_aeval_eq_prime_smul_of_minpoly_isEisensteinAt, Polynomial.content_dvd_coeff, not_pow_dvd_of_emultiplicity_lt, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_pow_ne_two, Associated.dvd', minpoly.isIntegrallyClosed_dvd, Polynomial.mem_ker_modByMonic, List.Sublist.prod_dvd_prod, irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree, dvd_pow_self_iff, FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt, Ordinal.mul_le_right_iff_opow_omega0_dvd, Polynomial.mem_normalizedFactors_iff, Associates.exists_prime_dvd_of_not_inf_one, one_sub_dvd_one_sub_pow, dvd_sub_self_right, exists_squarefree_dvd_pow_of_ne_zero, PadicInt.pow_p_dvd_int_iff, PowerBasis.exists_gen_dvd_sub, PowerSeries.X_pow_order_dvd, ZNum.dvd_iff_mod_eq_zero, Cardinal.dvd_of_le_of_aleph0_le, Commute.add_pow_dvd_pow_of_pow_eq_zero_right, EuclideanDomain.dvd_lcm_left, ValuationRing.dvd_total, gcd_pow_left_dvd_pow_gcd, dvd_normalize_iff, idealFactorsFunOfQuotHom_id, associated_gcd_right_iff, MvPolynomial.dvd_C_iff_exists, pow_one_sub_dvd_pow_mul_sub_one, Polynomial.rootMultiplicity_le_iff, dvd_abs, Irreducible.dvd_iff, dvd_prime_pow, Polynomial.Splits.dvd_of_roots_le_roots, Polynomial.X_dvd_sub_C, Irreducible.not_dvd_one, even_iff_two_dvd, FiniteMultiplicity.pow_dvd_iff_le_multiplicity, associated_gcd_left_iff, dvd_iff_multiplicity_pos, Irreducible.isCoprime_or_dvd, Associates.count_ne_zero_iff_dvd, Polynomial.dvd_comp_neg_X_iff, PNat.dvd_iff', QuadraticAlgebra.algebraMap_dvd_iff_dvd, Submodule.IsPrincipal.contentIdeal_generator_dvd, exists_integer_of_is_root_of_monic, IsAdjoinRoot.map_eq_zero_iff, Equiv.dvd_apply, isUnit_iff_forall_dvd, UniqueFactorizationMonoid.radical_dvd_iff_primeFactors_subset, UniqueFactorizationMonoid.mem_normalizedFactors_iff', normEDS_dvd_normEDS_two_mul, UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors, dvd_mul_right, Associated.dvd_iff_dvd_left, Zsqrtd.intCast_dvd, minpoly.dvd, Odd.add_dvd_pow_add_pow, abs_dvd_self, emultiplicity_eq_coe, MvPolynomial.mem_ideal_span_monomial_image_iff_dvd, dvd_rfl, Irreducible.dvd_or_isRelPrime, Polynomial.exists_irreducible_of_natDegree_ne_zero, emultiplicity_ne_zero, isRadical_iff_pow_one_lt, GCDMonoid.gcd_dvd_left, MvPolynomial.monomial_one_dvd_monomial_one, Polynomial.map_dvd_map, Polynomial.dvd_comp_X_sub_C_iff, Associates.mk_dvd_mk, UniqueFactorizationMonoid.radical_mul_dvd, idealFactorsFunOfQuotHom_coe_coe, squarefree_iff_no_irreducibles, EuclideanDomain.gcd_dvd_left, sq_dvd_add_pow_sub_sub, not_dvd_differentIdeal_of_intTrace_not_mem, Polynomial.exists_irreducible_of_natDegree_pos, divRadical_dvd_wronskian_left, Polynomial.Monic.dvd_iff_fraction_map_dvd_fraction_map, Polynomial.dvd_pow_natDegree_of_evalβ‚‚_eq_zero, PNat.mem_factorMultiset, IsLeftRegular.dvd_cancel_left, pow_dvd_of_le_multiplicity, Polynomial.dvd_iff_isRoot, prime_dvd_prime_iff_eq, Multiset.gcd_dvd, Commute.pow_dvd_sub_pow_of_pow_eq_zero_right, dvd_cancel_left_coe_nonZeroDivisors, Multiset.dvd_lcm, ZNum.dvd_to_int, PowerSeries.X_pow_dvd_iff, RatFunc.denom_add_dvd, Associates.dvd_out_iff, UniqueFactorizationMonoid.dvd_of_mem_factors, IsDiscreteValuationRing.addVal_le_iff_dvd, IsUnit.mul_right_dvd, PreTilt.pow_dvd_mul_untiltAux_sub_untiltAux_mul, Associated.dvd_iff_dvd_right, gcd_eq_left_iff, Ideal.mem_span_singleton, pow_dvd_pow_iff, IsUnit.dvd_mul_right, PowerSeries.X_dvd_iff, lcm_dvd_lcm_mul_left_right, FiniteMultiplicity.multiplicity_le_multiplicity_iff, ValuationRing.iff_dvd_total, IsIntegrallyClosed.pow_dvd_pow_iff, Associates.dvd_of_mem_factors, GCDMonoid.gcd_dvd_right, IsDiscreteValuationRing.toWithBotNat_le_toWithBotNat_iff, MvPolynomial.C_dvd_iff_zmod, Polynomial.mul_star_dvd_of_aeval_eq_zero_im_ne_zero, dvd_iff_exists_eq_mul_left, Ideal.exists_notMem_dvd_algebraMap_of_primesOver_eq_singleton, Polynomial.X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, Multiset.lcm_dvd, exists_reduced_fraction', Finset.lcm_dvd_iff, Submodule.IsPrincipal.mem_iff_generator_dvd, Polynomial.not_dvd_of_natDegree_lt, FermatLastTheoremForThreeGen.lambda_sq_dvd_c, Finset.lcm_mono, Ideal.dvd_span_singleton, dvd_refl, IsPrimitiveRoot.minpoly_dvd_cyclotomic, sub_dvd_pow_sub_pow, gcd_pow_right_dvd_pow_gcd, Polynomial.exists_primitive_lcm_of_isPrimitive, RatFunc.denom_dvd, Module.Basis.dvd_coord_smul, FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_mul_b, dvd_gcd_mul_iff_dvd_mul, sub_one_dvd_pow_sub_one, IsBezout.gcd_dvd_right, Irreducible.gcd_eq_one_iff, dvd_of_eq, Finset.dvd_lcm, Polynomial.map_dvd_map', Ideal.finprod_not_dvd, C_p_pow_dvd_bind₁_rename_wittPolynomial_sub_sum, neg_dvd, Polynomial.irreducible_iff_lt_natDegree_lt, FiniteMultiplicity.not_dvd_of_one_right, isUnit_iff_dvd_one, EuclideanDomain.dvd_or_coprime, Commute.pow_dvd_add_pow_of_pow_eq_zero_right, lcm_eq_one_iff, UniqueFactorizationMonoid.radical_dvd_radical_iff_normalizedFactors_subset_normalizedFactors, Polynomial.dvd_pow_natDegree_of_aeval_eq_zero, instReflDvd_mathlib, FermatLastTheoremForThreeGen.ex_cube_add_cube_eq_and_isCoprime_and_not_dvd_and_dvd, Polynomial.isRoot_of_isRoot_iff_dvd_derivative_mul, Prime.dvd_finset_prod_iff, gcd_dvd_gcd_mul_left, RingOfIntegers.dvd_norm, Irreducible.coprime_iff_not_dvd, FermatLastTheoremForThreeGen.Solution.lambda_dvd_a_add_eta_mul_b, Polynomial.IsPrimitive.dvd_iff_fraction_map_dvd_fraction_map, dvd_of_multiplicity_pos, gcd_dvd_iff_exists, IsAlgClosed.dvd_iff_roots_le_roots, Valuation.Integers.dvd_iff_le, Polynomial.C_content_dvd, Prime.dvd_prime_iff_associated, PadicInt.zmodRepr_eq_zero_iff_dvd, gcd_eq_right_iff, Ordinal.isSuccLimit_iff_omega0_dvd, Squarefree.dvd_pow_iff_dvd, QuadraticAlgebra.coe_dvd_iff, Polynomial.exists_irreducible_of_degree_pos, List.dvd_prod, FixedPoints.minpoly.of_evalβ‚‚, Prime.dvd_lcm, Polynomial.X_sub_C_pow_dvd_iff, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, IsPrimitiveRoot.toInteger_sub_one_not_dvd_two, IsCyclotomicExtension.Rat.Three.lambda_dvd_mul_sub_one_mul_sub_eta_add_one, MvPolynomial.monomial_dvd_monomial, FermatLastTheoremForThreeGen.lambda_sq_dvd_or_dvd_or_dvd, EuclideanDomain.mod_eq_zero, PNat.gcd_eq_left_iff_dvd, dvd_gcd_iff

Theorems

NameKindAssumesProvesValidatesDepends On
decompositionMonoid_iff πŸ“–mathematicalβ€”DecompositionMonoid
IsPrimal
β€”β€”
dvd_def πŸ“–mathematicalβ€”semigroupDvd
Semigroup.toMul
β€”β€”
dvd_iff_exists_eq_mul_left πŸ“–mathematicalβ€”semigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”exists_eq_mul_left_of_dvd
mul_comm
dvd_iff_exists_eq_mul_right πŸ“–mathematicalβ€”semigroupDvd
Semigroup.toMul
β€”dvd_def
dvd_mul πŸ“–mathematicalβ€”semigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”exists_dvd_and_dvd_of_dvd_mul
mul_dvd_mul
dvd_mul_left πŸ“–mathematicalβ€”semigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”Dvd.intro
mul_comm
dvd_mul_of_dvd_left πŸ“–mathematicalsemigroupDvdSemigroup.toMulβ€”Dvd.dvd.trans
dvd_mul_right
dvd_mul_of_dvd_right πŸ“–mathematicalsemigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”mul_comm
Dvd.dvd.mul_right
dvd_mul_right πŸ“–mathematicalβ€”semigroupDvd
Semigroup.toMul
β€”Dvd.intro
dvd_of_eq πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
β€”dvd_refl
dvd_of_mul_left_dvd πŸ“–β€”semigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”β€”Dvd.elim
Dvd.intro
mul_left_comm
mul_comm
dvd_of_mul_left_eq πŸ“–mathematicalCommMagma.toMul
CommSemigroup.toCommMagma
semigroupDvd
CommSemigroup.toSemigroup
β€”Dvd.intro_left
dvd_of_mul_right_dvd πŸ“–β€”semigroupDvd
Semigroup.toMul
β€”β€”Dvd.dvd.trans
dvd_mul_right
dvd_of_mul_right_eq πŸ“–mathematicalSemigroup.toMulsemigroupDvdβ€”Dvd.intro
dvd_pow πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
Monoid.toNatPowβ€”pow_succ'
Dvd.dvd.mul_right
dvd_pow_self πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”Dvd.dvd.pow
dvd_rfl
dvd_refl πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
β€”Dvd.intro
mul_one
dvd_rfl πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
β€”dvd_refl
dvd_trans πŸ“–β€”semigroupDvdβ€”β€”mul_assoc
exists_dvd_and_dvd_of_dvd_mul πŸ“–β€”semigroupDvd
Semigroup.toMul
β€”β€”DecompositionMonoid.primal
exists_eq_mul_left_of_dvd πŸ“–mathematicalsemigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”Dvd.elim
mul_comm
exists_eq_mul_right_of_dvd πŸ“–mathematicalsemigroupDvdSemigroup.toMulβ€”β€”
instIsTransDvd πŸ“–mathematicalβ€”IsTrans
semigroupDvd
β€”dvd_trans
instReflDvd_mathlib πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
β€”dvd_refl
mul_dvd_mul πŸ“–mathematicalsemigroupDvd
CommSemigroup.toSemigroup
CommMagma.toMul
CommSemigroup.toCommMagma
β€”mul_left_comm
mul_comm
mul_dvd_mul_left πŸ“–mathematicalsemigroupDvdSemigroup.toMulβ€”mul_assoc
mul_dvd_mul_right πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”mul_dvd_mul
dvd_refl
one_dvd πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”Dvd.intro
one_mul
pow_dvd_pow πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_add
pow_dvd_pow_of_dvd πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
Monoid.toNatPowβ€”pow_zero
pow_succ
mul_dvd_mul
pow_dvd_pow_of_dvd_of_le πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
Monoid.toNatPowβ€”instIsTransDvd
pow_dvd_pow
pow_dvd_pow_of_dvd

---

← Back to Index