Documentation Verification Report

Units

📁 Source: Mathlib/Algebra/Divisibility/Units.lean

Statistics

MetricCount
DefinitionsIsRelPrime
1
Theoremsdvd_of_dvd_mul_left, dvd_of_dvd_mul_left_of_isPrimal, dvd_of_dvd_mul_right, dvd_of_dvd_mul_right_of_isPrimal, isUnit_of_dvd, mul_dvd, mul_dvd_of_left_isPrimal, mul_dvd_of_right_isPrimal, mul_left, mul_left_iff, mul_right, mul_right_iff, of_dvd_left, of_dvd_right, of_mul_left_left, of_mul_left_right, of_mul_right_left, of_mul_right_right, dvd, dvd_mul_left, dvd_mul_right, isPrimal, isRelPrime_left, isRelPrime_right, mul_left_dvd, mul_right_dvd, coe_dvd, dvd_mul_left, dvd_mul_right, mul_left_dvd, mul_right_dvd, dvd_pow_self_iff, isRelPrime_comm, isRelPrime_mul_unit_left, isRelPrime_mul_unit_left_left, isRelPrime_mul_unit_left_right, isRelPrime_mul_unit_right, isRelPrime_mul_unit_right_left, isRelPrime_mul_unit_right_right, isRelPrime_one_left, isRelPrime_one_right, isRelPrime_self, isUnit_iff_dvd_one, isUnit_iff_forall_dvd, isUnit_of_dvd_one, isUnit_of_dvd_unit, not_isUnit_of_not_isUnit_dvd, symmetric_isRelPrime
48
Total49

IsRelPrime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_of_dvd_mul_left 📖IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
dvd_of_dvd_mul_right
mul_comm
dvd_of_dvd_mul_left_of_isPrimal 📖IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsPrimal
dvd_of_dvd_mul_right_of_isPrimal
mul_comm
dvd_of_dvd_mul_right 📖IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
dvd_of_dvd_mul_right_of_isPrimal
DecompositionMonoid.primal
dvd_of_dvd_mul_right_of_isPrimal 📖IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsPrimal
IsUnit.mul_right_dvd
isUnit_of_dvd
of_mul_left_right
isUnit_of_dvd 📖mathematicalIsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
IsUnitdvd_rfl
mul_dvd 📖mathematicalIsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
mul_dvd_of_left_isPrimal
DecompositionMonoid.primal
mul_dvd_of_left_isPrimal 📖mathematicalIsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
IsPrimal
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
mul_comm
mul_dvd_of_right_isPrimal
symm
mul_dvd_of_right_isPrimal 📖mathematicalIsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
IsPrimal
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
mul_dvd_mul_left
dvd_of_dvd_mul_left_of_isPrimal
symm
mul_left 📖mathematicalIsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
exists_dvd_and_dvd_of_dvd_mul
IsUnit.mul
Dvd.dvd.trans
dvd_mul_right
dvd_mul_left
mul_left_iff 📖mathematicalIsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
of_mul_left_left
of_mul_left_right
mul_left
mul_right 📖mathematicalIsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
isRelPrime_comm
mul_left
mul_right_iff 📖mathematicalIsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
of_mul_right_left
of_mul_right_right
mul_right
of_dvd_left 📖IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
of_mul_left_left
of_dvd_right 📖IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
symm
of_dvd_left
of_mul_left_left 📖IsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
dvd_mul_of_dvd_left
of_mul_left_right 📖IsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
of_mul_left_left
mul_comm
of_mul_right_left 📖IsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
isRelPrime_comm
of_mul_left_left
of_mul_right_right 📖IsRelPrime
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
of_mul_right_left
mul_comm

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
dvd 📖mathematicalIsUnitsemigroupDvd
Monoid.toSemigroup
Units.coe_dvd
dvd_mul_left 📖mathematicalIsUnit
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.dvd_mul_left
dvd_mul_right 📖mathematicalIsUnitsemigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.dvd_mul_right
isPrimal 📖mathematicalIsUnitIsPrimal
Monoid.toSemigroup
dvd
one_dvd
mul_one
isRelPrime_left 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrimeisUnit_of_dvd_unit
isRelPrime_right 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrimeIsRelPrime.symm
isRelPrime_left
mul_left_dvd 📖mathematicalIsUnit
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.mul_left_dvd
mul_right_dvd 📖mathematicalIsUnitsemigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.mul_right_dvd

Units

Theorems

NameKindAssumesProvesValidatesDepends On
coe_dvd 📖mathematicalsemigroupDvd
Monoid.toSemigroup
val
mul_inv_cancel_left
dvd_mul_left 📖mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
val
mul_comm
dvd_mul_right
dvd_mul_right 📖mathematicalsemigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
val
mul_assoc
mul_inv_cancel_right
Dvd.dvd.mul_right
dvd_mul_right
mul_left_dvd 📖mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
val
mul_comm
mul_right_dvd
mul_right_dvd 📖mathematicalsemigroupDvd
Monoid.toSemigroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
val
mul_assoc
dvd_trans
Dvd.intro
mul_inv
mul_one

(root)

Definitions

NameCategoryTheorems
IsRelPrime 📖MathDef
53 mathmath: isRelPrime_mul_unit_left_left, isRelPrime_self, UniqueFactorizationMonoid.exists_reduced_factors, IsUnit.isRelPrime_right, WfDvdMonoid.isRelPrime_of_no_irreducible_factors, IsFractionRing.exists_reduced_fraction, Irreducible.isRelPrime_iff_not_dvd, IsRelPrime.pow_right_iff, isRelPrime_mul_unit_right, UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert, isRelPrime_zero_right, isRelPrime_one_right, IsRelPrime.neg_left_iff, not_isRelPrime_zero_zero, IsRelPrime.pow_iff, IsRelPrime.add_mul_right_left_iff, IsRelPrime.add_mul_left_left_iff, isRelPrime_mul_unit_right_left, IsRelPrime.pow_left_iff, IsUnit.isRelPrime_left, isRelPrime_of_no_nonunits_factors, IsRelPrime.neg_right_iff, IsRelPrime.mul_add_left_left_iff, squarefree_mul_iff, IsRelPrime.mul_add_right_left_iff, isRelPrime_comm, IsRelPrime.add_mul_left_right_iff, UniqueFactorizationMonoid.pairwise_primeFactors_isRelPrime, isRelPrime_mul_unit_right_right, isRelPrime_mul_unit_left_right, IsRelPrime.mul_left_iff, gcd_isUnit_iff_isRelPrime, IsRelPrime.prod_left_iff, IsCoprime.isRelPrime, isRelPrime_iff_isCoprime, isRelPrime_mul_unit_left, Irreducible.dvd_or_isRelPrime, Associates.mk_isRelPrime_iff, IsRelPrime.mul_add_left_right_iff, IsRelPrime.mul_add_right_right_iff, pairwise_isRelPrime_iff_isRelPrime_prod, IsFractionRing.num_den_reduced, isRelPrime_one_left, UniqueFactorizationMonoid.isRelPrime_iff_no_prime_factors, isRelPrime_zero_left, IsRelPrime.neg_neg_iff, IsRelPrime.prod_right_iff, IsRelPrime.of_squarefree_mul, IsRelPrime.add_mul_right_right_iff, symmetric_isRelPrime, UniqueFactorizationMonoid.exists_reduced_factors', Nat.coprime_iff_isRelPrime, IsRelPrime.mul_right_iff

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_pow_self_iff 📖mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
Monoid.toNatPow
IsUnit
eq_or_ne
pow_zero
isRelPrime_comm 📖mathematicalIsRelPrime
CommMonoid.toMonoid
IsRelPrime.symm
isRelPrime_mul_unit_left 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrime
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
isRelPrime_mul_unit_left_left
isRelPrime_mul_unit_left_right
isRelPrime_mul_unit_left_left 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrime
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsRelPrime.of_mul_left_right
IsUnit.dvd_mul_left
isRelPrime_mul_unit_left_right 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrime
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
isRelPrime_comm
isRelPrime_mul_unit_left_left
isRelPrime_mul_unit_right 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrime
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
isRelPrime_mul_unit_right_left
isRelPrime_mul_unit_right_right
isRelPrime_mul_unit_right_left 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrime
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
mul_comm
isRelPrime_mul_unit_left_left
isRelPrime_mul_unit_right_right 📖mathematicalIsUnit
CommMonoid.toMonoid
IsRelPrime
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
mul_comm
isRelPrime_mul_unit_left_right
isRelPrime_one_left 📖mathematicalIsRelPrime
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnit.isRelPrime_left
isUnit_one
isRelPrime_one_right 📖mathematicalIsRelPrime
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnit.isRelPrime_right
isUnit_one
isRelPrime_self 📖mathematicalIsRelPrime
CommMonoid.toMonoid
IsUnit
dvd_rfl
isUnit_of_dvd_unit
isUnit_iff_dvd_one 📖mathematicalIsUnit
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnit.dvd
mul_comm
isUnit_iff_forall_dvd 📖mathematicalIsUnit
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
isUnit_iff_dvd_one
Dvd.dvd.trans
one_dvd
isUnit_of_dvd_one 📖mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnitisUnit_iff_dvd_one
isUnit_of_dvd_unit 📖semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
IsUnit
isUnit_iff_dvd_one
Dvd.dvd.trans
not_isUnit_of_not_isUnit_dvd 📖IsUnit
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
isUnit_of_dvd_unit
symmetric_isRelPrime 📖mathematicalSymmetric
IsRelPrime
CommMonoid.toMonoid
IsRelPrime.symm

---

← Back to Index