Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/EuclideanDomain/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsadd_mul_div_left, add_mul_div_right, div_add_div_of_dvd, div_div, div_dvd_of_dvd, div_eq_div_iff_mul_eq_mul_of_dvd, div_eq_iff_eq_mul_of_dvd, div_mul, div_one, div_pow, div_self, div_sub_div_of_dvd, dvd_div_of_mul_dvd, dvd_gcd, dvd_lcm_left, dvd_lcm_right, dvd_mod_iff, eq_div_iff_mul_eq_of_dvd, eq_div_of_mul_eq_left, eq_div_of_mul_eq_right, gcd_dvd, gcd_dvd_left, gcd_dvd_right, gcd_eq_gcd_ab, gcd_eq_left, gcd_eq_zero_iff, gcd_mul_lcm, gcd_one_left, gcd_self, gcd_val, gcd_zero_right, instIsDomain, lcm_dvd, lcm_dvd_iff, lcm_eq_zero_iff, lcm_zero_left, lcm_zero_right, mod_eq_sub_mul_div, mod_eq_zero, mod_one, mod_self, mul_add_div_left, mul_add_div_right, mul_div_assoc, mul_div_cancel', mul_div_mul_cancel, mul_div_mul_comm_of_dvd_dvd, mul_sub_div_left, mul_sub_div_right, sub_mul_div_left, sub_mul_div_right, toMulDivCancelClass, val_dvd_le, xgcdAux_P, xgcdAux_fst, xgcdAux_val, zero_div, zero_mod
58
Total58

EuclideanDomain

Theorems

NameKindAssumesProvesValidatesDepends On
add_mul_div_left πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
Distrib.toMul
β€”eq_div_of_mul_eq_right
mul_add
Distrib.leftDistribClass
mul_div_cancel'
add_mul_div_right πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
Distrib.toMul
β€”mul_comm
add_mul_div_left
div_add_div_of_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
instDiv
Distrib.toMul
β€”eq_div_of_mul_eq_right
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
mul_add
Distrib.leftDistribClass
mul_assoc
mul_div_cancel'
mul_comm
div_div πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”eq_or_ne
div_zero
zero_div
MulZeroClass.zero_mul
div_mul
mul_div_cancel'
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
div_dvd_of_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDivβ€”zero_dvd_iff
dvd_zero
mul_comm
mul_div_assoc
mul_div_cancel_rightβ‚€
toMulDivCancelClass
div_eq_div_iff_mul_eq_mul_of_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”div_eq_iff_eq_mul_of_dvd
mul_div_assoc
eq_div_iff_mul_eq_of_dvd
mul_comm
mul_assoc
div_eq_iff_eq_mul_of_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”mul_div_cancel_leftβ‚€
toMulDivCancelClass
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
div_mul πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
instDivβ€”eq_or_ne
MulZeroClass.mul_zero
div_zero
eq_div_of_mul_eq_right
mul_div_assoc
mul_comm
mul_div_mul_cancel
div_one πŸ“–mathematicalβ€”instDiv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
toCommRing
β€”eq_div_of_mul_eq_left
one_ne_zero'
NeZero.one
toNontrivial
mul_one
div_pow πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instDiv
β€”eq_or_ne
MulZeroClass.zero_mul
div_zero
pow_zero
div_self
NeZero.one
toNontrivial
zero_pow
mul_div_cancel_leftβ‚€
toMulDivCancelClass
mul_pow
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
div_self πŸ“–mathematicalβ€”instDiv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
toCommRing
β€”one_mul
mul_div_cancel_rightβ‚€
toMulDivCancelClass
div_sub_div_of_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”eq_div_of_mul_eq_right
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
mul_sub
mul_assoc
mul_div_cancel'
mul_comm
dvd_div_of_mul_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
instDivβ€”eq_or_ne
div_zero
mul_assoc
mul_div_cancel_leftβ‚€
toMulDivCancelClass
dvd_gcd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
gcdβ€”GCD.induction
gcd_zero_left
gcd_val
dvd_mod_iff
dvd_lcm_left πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
lcm
β€”by_cases
lcm.eq_1
div_zero
dvd_zero
gcd_dvd
eq_div_of_mul_eq_left
mul_right_comm
mul_assoc
dvd_lcm_right πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
lcm
β€”by_cases
lcm.eq_1
div_zero
dvd_zero
gcd_dvd
eq_div_of_mul_eq_right
mul_assoc
mul_right_comm
dvd_mod_iff πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instModβ€”dvd_add_right
Dvd.dvd.mul_right
div_add_mod
eq_div_iff_mul_eq_of_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”div_eq_iff_eq_mul_of_dvd
eq_div_of_mul_eq_left πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
instDivβ€”mul_div_cancel_rightβ‚€
toMulDivCancelClass
eq_div_of_mul_eq_right πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
instDivβ€”mul_div_cancel_leftβ‚€
toMulDivCancelClass
gcd_dvd πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
gcd
β€”GCD.induction
gcd_zero_left
dvd_zero
dvd_rfl
gcd_val
dvd_mod_iff
gcd_dvd_left πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
gcd
β€”gcd_dvd
gcd_dvd_right πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
gcd
β€”gcd_dvd
gcd_eq_gcd_ab πŸ“–mathematicalβ€”gcd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
Distrib.toMul
gcdA
gcdB
β€”xgcdAux_P
mul_one
MulZeroClass.mul_zero
add_zero
zero_add
xgcd_val
xgcdAux_val
gcd_eq_left πŸ“–mathematicalβ€”gcd
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
β€”gcd_dvd_right
gcd_val
mod_eq_zero
gcd_zero_left
gcd_eq_zero_iff πŸ“–mathematicalβ€”gcd
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”gcd_dvd
gcd_zero_right
gcd_mul_lcm πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
gcd
lcm
β€”lcm.eq_1
MulZeroClass.zero_mul
gcd_eq_zero_iff
gcd_dvd
mul_assoc
mul_div_cancel_leftβ‚€
toMulDivCancelClass
gcd_one_left πŸ“–mathematicalβ€”gcd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
toCommRing
β€”gcd_eq_left
one_dvd
gcd_self πŸ“–mathematicalβ€”gcdβ€”gcd_eq_left
dvd_rfl
gcd_val πŸ“–mathematicalβ€”gcd
instMod
β€”mod_lt
gcd.eq_1
mod_zero
gcd_zero_right
gcd_zero_right πŸ“–mathematicalβ€”gcd
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”mod_lt
gcd.eq_1
zero_mod
gcd_zero_left
instIsDomain πŸ“–mathematicalβ€”IsDomain
CommSemiring.toSemiring
CommRing.toCommSemiring
toCommRing
β€”or_iff_not_and_not
mul_div_cancel_rightβ‚€
toMulDivCancelClass
zero_div
NoZeroDivisors.to_isDomain
toNontrivial
IsDomain.toIsCancelMulZero
lcm_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
lcmβ€”lcm.eq_1
div_zero
gcd_eq_zero_iff
gcd_dvd
gcd_eq_gcd_ab
mul_add
Distrib.leftDistribClass
dvd_add
mul_left_comm
mul_dvd_mul_left
Dvd.dvd.mul_right
mul_comm
mul_div_cancel_leftβ‚€
toMulDivCancelClass
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
mul_assoc
mul_right_comm
lcm_dvd_iff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
lcm
β€”Dvd.dvd.trans
dvd_lcm_left
dvd_lcm_right
lcm_dvd
lcm_eq_zero_iff πŸ“–mathematicalβ€”lcm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”gcd_eq_zero_iff
gcd_dvd
mul_div_cancel_leftβ‚€
toMulDivCancelClass
MulZeroClass.mul_zero
mul_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
mul_div_assoc
gcd_dvd_right
lcm.eq_1
lcm_zero_left
lcm_zero_right
lcm_zero_left πŸ“–mathematicalβ€”lcm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”lcm.eq_1
MulZeroClass.zero_mul
zero_div
lcm_zero_right πŸ“–mathematicalβ€”lcm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”lcm.eq_1
MulZeroClass.mul_zero
zero_div
mod_eq_sub_mul_div πŸ“–mathematicalβ€”instMod
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instDiv
β€”add_sub_cancel_left
div_add_mod
mod_eq_zero πŸ“–mathematicalβ€”instMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
β€”div_add_mod
add_zero
dvd_mul_right
add_left_cancel_iff
AddLeftCancelSemigroup.toIsLeftCancelAdd
MulZeroClass.zero_mul
mul_div_cancel_leftβ‚€
toMulDivCancelClass
mod_one πŸ“–mathematicalβ€”instMod
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
toCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mod_eq_zero
one_dvd
mod_self πŸ“–mathematicalβ€”instMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”mod_eq_zero
dvd_rfl
mul_add_div_left πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
Distrib.toMul
β€”eq_div_of_mul_eq_right
mul_add
Distrib.leftDistribClass
mul_div_cancel'
mul_add_div_right πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
Distrib.toMul
β€”mul_comm
mul_add_div_left
mul_div_assoc πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”div_zero
MulZeroClass.mul_zero
mul_div_cancel_leftβ‚€
toMulDivCancelClass
mul_left_comm
mul_div_cancel' πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
instDiv
β€”mul_div_assoc
mul_div_cancel_leftβ‚€
toMulDivCancelClass
mul_div_mul_cancel πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”MulZeroClass.mul_zero
div_zero
eq_div_of_mul_eq_right
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
mul_assoc
mul_div_assoc
mul_dvd_mul_left
mul_div_cancel_leftβ‚€
toMulDivCancelClass
mul_ne_zero
IsDomain.to_noZeroDivisors
mul_div_mul_comm_of_dvd_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”eq_or_ne
MulZeroClass.zero_mul
div_zero
MulZeroClass.mul_zero
mul_div_cancel_leftβ‚€
toMulDivCancelClass
mul_mul_mul_comm
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
mul_sub_div_left πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”eq_div_of_mul_eq_right
mul_sub
mul_div_cancel'
mul_sub_div_right πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”mul_comm
mul_sub_div_left
sub_mul_div_left πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”eq_div_of_mul_eq_right
mul_sub
mul_div_cancel'
sub_mul_div_right πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
instDiv
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”mul_comm
sub_mul_div_left
toMulDivCancelClass πŸ“–mathematicalβ€”MulDivCancelClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
toCommRing
instDiv
β€”eq_of_sub_eq_zero
mul_right_not_lt
sub_eq_iff_eq_add'
div_add_mod
mul_comm
sub_mul
mod_lt
val_dvd_le πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
toCommRing
rβ€”mul_left_not_lt
MulZeroClass.mul_zero
xgcdAux_P πŸ“–mathematicalDistrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
Distrib.toMul
xgcdAuxβ€”GCD.induction
xgcd_zero_left
mul_sub
add_sub
sub_add_eq_add_sub
sub_sub
mul_comm
mul_assoc
add_mul
Distrib.rightDistribClass
mod_eq_sub_mul_div
xgcdAux_fst πŸ“–mathematicalβ€”xgcdAux
gcd
β€”GCD.induction
xgcd_zero_left
gcd_zero_left
gcd_val
xgcdAux_val πŸ“–mathematicalβ€”xgcdAux
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
toCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
gcd
xgcd
β€”xgcd.eq_1
xgcdAux_fst
zero_div πŸ“–mathematicalβ€”instDiv
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”by_cases
div_zero
MulZeroClass.zero_mul
mul_div_cancel_rightβ‚€
toMulDivCancelClass
zero_mod πŸ“–mathematicalβ€”instMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
β€”mod_eq_zero
dvd_zero

---

← Back to Index