Documentation Verification Report

IsField

πŸ“ Source: Mathlib/Algebra/Field/IsField.lean

Statistics

MetricCount
DefinitionsIsField, toField, toSemifield
3
TheoremstoIsField, exists_pair_ne, isDomain, mul_comm, mul_inv_cancel, nontrivial, toIsField, instIsDomain, not_isField_of_subsingleton, uniq_inv_of_isField
10
Total13

Field

Theorems

NameKindAssumesProvesValidatesDepends On
toIsField πŸ“–mathematicalβ€”IsField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
β€”Semifield.toIsField

IsField

Definitions

NameCategoryTheorems
toField πŸ“–CompOpβ€”
toSemifield πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_pair_ne πŸ“–β€”IsFieldβ€”β€”β€”
isDomain πŸ“–mathematicalIsFieldIsDomainβ€”mul_inv_cancel
mul_comm
mul_one
mul_assoc
exists_pair_ne
mul_comm πŸ“–mathematicalIsFieldDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
mul_inv_cancel πŸ“–mathematicalIsFieldDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
nontrivial πŸ“–mathematicalIsFieldNontrivialβ€”exists_pair_ne

Semifield

Theorems

NameKindAssumesProvesValidatesDepends On
toIsField πŸ“–mathematicalβ€”IsField
DivisionSemiring.toSemiring
toDivisionSemiring
β€”Nontrivial.exists_pair_ne
toNontrivial
CommSemiring.mul_comm
mul_inv_cancelβ‚€

(root)

Definitions

NameCategoryTheorems
IsField πŸ“–CompData
48 mathmath: IsArtinianRing.isField_of_isDomain, NumberField.RingOfIntegers.not_isField, Ring.isField_iff_isSimpleOrder_ideal, ringKrullDim_eq_one_iff_of_isLocalRing_isDomain, AlgebraicGeometry.isField_stalk_of_closure_mem_irreducibleComponents, Finite.isField_of_domain, IsFractionRing.surjective_iff_isField, Ideal.IsField.of_isPrincipalIdealRing_polynomial, PrimeSpectrum.t1Space_iff_isField, Ideal.polynomial_not_isField, Algebra.FormallyUnramified.isField_quotient_map_maximalIdeal, IsLocalRing.subsingleton_cotangentSpace_iff, IsLocalRing.finrank_cotangentSpace_eq_zero_iff, Int.not_isField, Fintype.not_isField_of_card_not_prime_pow, Field.toIsField, Algebra.TensorProduct.isField_of_isAlgebraic, Polynomial.not_isField, Finite.isDomain_to_isField, IsDiscreteValuationRing.not_isField, Subalgebra.isField_of_algebraic, IsLocalRing.isField_iff_maximalIdeal_eq, Semifield.toIsField, Algebra.TensorProduct.not_isField_of_transcendental, PowerSeries.not_isField, IsSimpleRing.isField_center, IsArtinianRing.isField_of_isReduced_of_isLocalRing, Ring.not_isField_iff_exists_prime, Ring.KrullDimLE.isField_of_isDomain, Valuation.valuationSubring_not_isField, isSimpleRing_iff_isField, IsLocalization.AtPrime.not_isField, Ring.KrullDimLE.isField_of_isReduced, IntermediateField.LinearDisjoint.isField_of_isAlgebraic', AlgebraicGeometry.isField_of_universallyClosed, not_isField_of_subsingleton, PrimeSpectrum.subsingleton_iff_isField_of_isReduced, Ring.isField_iff_maximal_bot, IntermediateField.LinearDisjoint.isField_of_forall, Ring.not_isField_of_ne_of_ne, AlgebraicGeometry.isField_of_isIntegral_of_subsingleton, Algebra.IsIntegral.isField_iff_isField, Submodule.traceDual_top, Ideal.Quotient.maximal_ideal_iff_isField_quotient, IntermediateField.LinearDisjoint.isField_of_isAlgebraic, Algebra.FormallyUnramified.isField_of_isAlgClosed_of_isLocalRing, Ring.not_isField_iff_exists_ideal_bot_lt_and_lt_top, FunctionField.ringOfIntegers.not_isField

Theorems

NameKindAssumesProvesValidatesDepends On
instIsDomain πŸ“–mathematicalβ€”IsDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsField.isDomain
Semifield.toIsField
not_isField_of_subsingleton πŸ“–mathematicalβ€”IsFieldβ€”IsField.exists_pair_ne
uniq_inv_of_isField πŸ“–mathematicalIsField
Ring.toSemiring
ExistsUnique
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”existsUnique_of_exists_of_unique
IsField.mul_inv_cancel
mul_one
mul_assoc
IsField.mul_comm
one_mul

---

← Back to Index