| Name | Category | Theorems |
closure 📖 | CompOp | 25 mathmath: closure_le, cardinalMk_closure_le_max, mem_closure, closure_iUnion, RingHom.eqOn_field_closure, mem_closure_iff, closure_mono, mem_closure_of_mem, IsFractionRing.closure_range_algebraMap, subring_closure_le, cardinalMk_closure, closure_sUnion, IsFractionRing.ringHom_fieldRange_eq_of_comp_eq_of_range_eq, IsFractionRing.ringHom_fieldRange_eq_of_comp_eq, closure_preimage_le, IsFractionRing.lift_fieldRange_eq_of_range_eq, closure_eq, closure_union, RingHom.map_field_closure, closure_empty, subset_closure, IsFractionRing.lift_fieldRange, IntermediateField.adjoin_toSubfield, RingHom.field_closure_preimage_le, closure_univ
|
comap 📖 | CompOp | 29 mathmath: rank_comap, comap_comap, relrank_comap_comap_eq_relrank_of_surjective, lift_relrank_comap_comap_eq_lift_relrank_of_surjective, relfinrank_comap_comap_eq_relfinrank_of_le, finrank_comap, relfinrank_comap_comap_eq_relfinrank_inf, relrank_comap, relrank_comap_comap_eq_relrank_inf, lift_relrank_comap_comap_eq_lift_relrank_of_le, map_comap_eq, gc_map_comap, coe_comap, map_comap_eq_self, map_comap_eq_self_of_surjective, relrank_comap_comap_eq_relrank_of_le, comap_top, lift_relrank_comap, relfinrank_comap, map_le_iff_le_comap, closure_preimage_le, comap_map, lift_rank_comap, comap_iInf, relfinrank_comap_comap_eq_relfinrank_of_surjective, RingHom.field_closure_preimage_le, lift_relrank_comap_comap_eq_lift_relrank_inf, mem_comap, comap_inf
|
gi 📖 | CompOp | — |
inclusion 📖 | CompOp | — |
instCompleteLattice 📖 | CompOp | 28 mathmath: IntermediateField.sSup_toSubfield, mem_sSup_of_directedOn, map_sup, coe_iSup_of_directed, splits_bot, NumberField.isTotallyReal_sup, closure_iUnion, mem_bot_iff_pow_eq_self, isTotallyReal_bot, extendScalars_inf, NumberField.isTotallyReal_iSup, bot_eq_of_zMod_algebra, map_bot, roots_X_pow_char_sub_X_bot, extendScalars_top, closure_sUnion, bot_eq_of_charZero, mem_iSup_of_directed, map_iSup, IntermediateField.iSup_toSubfield, mem_bot_iff_intCast, coe_sSup_of_directedOn, extendScalars_sup, closure_union, closure_empty, card_bot, IntermediateField.sup_toSubfield, ZMod.fieldRange_castHom_eq_bot
|
instDistribMulActionSubtypeMem 📖 | CompOp | — |
instInfSet 📖 | CompOp | 10 mathmath: mem_sInf, map_iInf, IntermediateField.iInf_toSubfield, mem_iInf, coe_iInf, sInf_toSubring, coe_sInf, IntermediateField.sInf_toSubfield, comap_iInf, isGLB_sInf
|
instInhabited 📖 | CompOp | — |
instMin 📖 | CompOp | 19 mathmath: map_inf, inf_relrank_left, relfinrank_mul_relfinrank_eq_inf_relfinrank, relfinrank_inf_mul_relfinrank_of_le, mem_inf, relfinrank_comap_comap_eq_relfinrank_inf, relrank_comap_comap_eq_relrank_inf, map_comap_eq, inf_relfinrank_left, relfinrank_inf_mul_relfinrank, relrank_mul_relrank_eq_inf_relrank, relrank_inf_mul_relrank, coe_inf, inf_relfinrank_right, relrank_inf_mul_relrank_of_le, IntermediateField.inf_toSubfield, lift_relrank_comap_comap_eq_lift_relrank_inf, inf_relrank_right, comap_inf
|
instModuleSubtypeMem 📖 | CompOp | 15 mathmath: FixedPoints.instFiniteDimensionalSubtypeMemSubfieldSubfield, rank_comap, FixedPoints.finrank_eq_card, relfinrank_mul_finrank_top, relfinrank_eq_finrank_of_le, FixedPoints.rank_le_card, relrank_mul_rank_top, finrank_comap, FixedPoints.finrank_le_card, relfinrank_top_right, relrank_dvd_rank_top_of_le, relrank_top_right, relrank_eq_rank_of_le, relfinrank_dvd_finrank_top_of_le, lift_rank_comap
|
instMulActionSubtypeMem 📖 | CompOp | 2 mathmath: relfinrank_eq_finrank_of_le, relrank_eq_rank_of_le
|
instMulActionWithZeroSubtypeMem 📖 | CompOp | — |
instMulDistribMulActionSubtypeMem 📖 | CompOp | — |
instMulSemiringActionSubtypeMem 📖 | CompOp | — |
instSMulSubtypeMem 📖 | CompOp | 7 mathmath: smulCommClass_left, FixedPoints.instSMulCommClassSubtypeMemSubfieldSubfield, smul_def, smulCommClass_right, instFaithfulSMulSubtypeMem, instIsScalarTowerSubtypeMem, FixedPoints.smulCommClass'
|
instSMulWithZeroSubtypeMem 📖 | CompOp | — |
instTop 📖 | CompOp | 18 mathmath: mem_top, relfinrank_top_left, coe_top, NumberField.isTotallyReal_top_iff, relrank_top_left, NumberField.instIsTotallyRealSubtypeMemSubfieldTop, IsFractionRing.closure_range_algebraMap, relfinrank_top_right, NumberField.maximalRealSubfield_eq_top_iff_isTotallyReal, NumberField.IsTotallyReal.maximalRealSubfield_eq_top, comap_top, RingHom.fieldRange_eq_map, relrank_top_right, IntermediateField.top_toSubfield, Complex.subfield_eq_of_closed, RingHom.fieldRange_eq_top_iff, Real.subfield_eq_of_closed, closure_univ
|
map 📖 | CompOp | 24 mathmath: map_inf, map_sup, map_iInf, lift_relrank_map_map, relrank_comap, IntermediateField.toSubfield_map, RingHom.map_fieldRange, map_comap_eq, map_bot, gc_map_comap, map_comap_eq_self, map_comap_eq_self_of_surjective, relrank_map_map, map_iSup, map_map, lift_relrank_comap, relfinrank_comap, RingHom.fieldRange_eq_map, map_le_iff_le_comap, comap_map, relfinrank_map_map, RingHom.map_field_closure, mem_map, coe_map
|
toAlgebra 📖 | CompOp | 39 mathmath: NumberField.IsCMField.isConj_complexConj, NumberField.IsCMField.zpowers_complexConj_eq_top, NumberField.IsCMField.equivInfinitePlace_symm_apply, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, extendScalars_toSubfield, relfinrank_eq_finrank_of_le, IntermediateField.subset_adjoin_of_subset_left, NumberField.IsCMField.isQuadraticExtension, NumberField.IsCMField.orderOf_complexConj, extendScalars_le_extendScalars_iff, extendScalars_inf, NumberField.IsCMField.complexConj_apply_apply, NumberField.IsCMField.coe_ringOfIntegersComplexConj, NumberField.IsCMField.equivInfinitePlace_apply, NumberField.IsCMField.is_quadratic, NumberField.IsCMField.complexConj_apply_eq_self, algebraMap_ofSubfield, NumberField.IsCMField.complexEmbedding_complexConj, extendScalars_top, le_extendScalars_iff, NumberField.IsCMField.ringOfIntegersComplexConj_eq_self_iff, extendScalars_le_iff, NumberField.IsCMField.mem_realUnits_iff, extendScalars.orderIso_apply, relrank_eq_rank_of_le, NumberField.IsCMField.exists_isConj, extendScalars_sup, NumberField.IsCMField.complexConj_eq_self_iff, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, NumberField.IsCMField.infinitePlace_complexConj, extendScalars.orderIso_symm_apply_coe, extendScalars_self, mem_extendScalars, NumberField.instIsAlgebraicSubtypeMemSubfield, NumberField.IsCMField.complexConj_torsion, NumberField.IsCMField.Units.complexConj_eq_self_iff, coe_extendScalars, extendScalars_injective, IntermediateField.adjoin_contains_field_as_subfield
|
topEquiv 📖 | CompOp | — |