Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Field/Subfield/Defs.lean

Statistics

MetricCount
Definitionscopy, instDivSubtypeMem, instInvSubtypeMem, instPartialOrder, instPowSubtypeMemInt, instRingSubtypeMem, instSetLike, subtype, toAddSubgroup, toDivisionRing, toField, toSubring, SubfieldClass, instNNRatCast, instRatCast, instSMulNNRat, instSMulRat, toDivisionRing, toField, toSubfield
20
Theoremsadd_mem, coe_add, coe_copy, coe_div, coe_inv, coe_mul, coe_neg, coe_one, coe_set_mk, coe_sub, coe_subtype, coe_toAddSubgroup, coe_toSubmonoid, coe_toSubring, coe_zero, copy_eq, div_mem, ext, ext_iff, instSubfieldClass, intCast_mem, inv_mem, inv_mem', mem_carrier, mem_mk, mem_toAddSubgroup, mem_toSubmonoid, mem_toSubring, mk_le_mk, mul_mem, neg_mem, one_mem, pow_mem, sub_mem, subtype_apply, subtype_injective, toSubring_subtype_eq_subtype, zero_mem, zpow_mem, zsmul_mem, coe_nnqsmul, coe_nnratCast, coe_qsmul, coe_ratCast, nnqsmul_mem, nnratCast_mem, ofScientific_mem, qsmul_mem, ratCast_mem, toInvMemClass, toSubgroupClass, toSubringClass
52
Total72

Subfield

Definitions

NameCategoryTheorems
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
instDivSubtypeMem πŸ“–CompOp
1 mathmath: coe_div
instInvSubtypeMem πŸ“–CompOp
1 mathmath: coe_inv
instPartialOrder πŸ“–CompOp
20 mathmath: IntermediateField.fieldRange_le, relfinrank_eq_one_iff, closure_le, mk_le_mk, closure_mono, gc_map_comap, NumberField.isTotallyReal_iff_le_maximalRealSubfield, extendScalars_top, extendScalars.orderIso_apply, map_le_iff_le_comap, closure_preimage_le, IntermediateField.adjoin_le_subfield, NumberField.IsTotallyReal.le_maximalRealSubfield, relrank_eq_one_iff, extendScalars.orderIso_symm_apply_coe, extendScalars_self, RingHom.field_closure_preimage_le, isGLB_sInf, le_topologicalClosure, extendScalars_injective
instPowSubtypeMemInt πŸ“–CompOpβ€”
instRingSubtypeMem πŸ“–CompOp
10 mathmath: coe_add, splits_bot, coe_mul, roots_X_pow_char_sub_X_bot, RingHom.rangeRestrictFieldEquiv_apply_symm_apply, FixedPoints.smul_polynomial, charP, expChar, FixedPoints.smul, RingHom.rangeRestrictFieldEquiv_apply_coe
instSetLike πŸ“–CompOp
164 mathmath: ext_iff, FixedPoints.instFiniteDimensionalSubtypeMemSubfieldSubfield, rank_comap, FixedPoints.finrank_eq_card, FixedPoints.minpoly.monic, HahnSeries.mem_cardSuppLTSubfield, FixedPoints.minpoly.irreducible, mem_sSup_of_directedOn, mem_sInf, NumberField.IsCMField.isConj_complexConj, NumberField.IsCMField.zpowers_complexConj_eq_top, coe_add, NumberField.instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic, closure_le, mem_toSubring, FixedPoints.isSeparable, NumberField.IsCMField.equivInfinitePlace_symm_apply, NumberField.IsCMField.units_rank_eq_units_rank, NumberField.mem_maximalRealSubfield_iff, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, FixedPoints.minpoly.evalβ‚‚', mem_top, relfinrank_mul_finrank_top, RingHom.mem_fieldRange_self, extendScalars_toSubfield, relfinrank_eq_finrank_of_le, coe_top, coe_iSup_of_directed, splits_bot, coe_mul, cardinalMk_closure_le_max, NumberField.isTotallyReal_sup, mem_closure, FixedPoints.rank_le_card, NumberField.isTotallyReal_top_iff, relrank_mul_rank_top, NumberField.IsCMField.isQuadraticExtension, instSubfieldClass, RingHom.eqOn_field_closure, NumberField.IsCMField.orderOf_complexConj, mem_bot_iff_pow_eq_self, coe_inv, isTotallyReal_bot, NumberField.IsCMField.regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, coe_zero, mem_closure_iff, IntermediateField.coe_type_toSubfield, smulCommClass_left, FixedPoints.instSMulCommClassSubtypeMemSubfieldSubfield, RingHom.coe_rangeRestrictField, extendScalars_le_extendScalars_iff, FixedPoints.normal, extendScalars_inf, finrank_comap, mem_inf, NumberField.instIsTotallyRealSubtypeMemSubfieldTop, FixedPoints.finrank_le_card, smul_def, mem_iInf, HahnSeries.cardSuppLTSubfield_carrier, NumberField.IsCMField.complexConj_apply_apply, mem_closure_of_mem, NumberField.of_subfield, NumberField.IsCMField.coe_ringOfIntegersComplexConj, NumberField.IsCMField.equivInfinitePlace_apply, IntermediateField.mem_toSubfield, NumberField.IsCMField.is_quadratic, NumberField.IsCMField.complexConj_apply_eq_self, algebraMap_ofSubfield, zero_mem, coe_iInf, NumberField.IsCMField.complexEmbedding_complexConj, coe_comap, NumberField.CMExtension.equivMaximalRealSubfield_apply, NumberField.isTotallyReal_iff_le_maximalRealSubfield, subtype_apply, roots_X_pow_char_sub_X_bot, relfinrank_top_right, NumberField.IsCMField.card_infinitePlace_eq_card_infinitePlace, coe_one, smulCommClass_right, instFaithfulSMulSubtypeMem, extendScalars_top, IntermediateField.coe_toSubfield, cardinalMk_closure, coe_set_mk, continuousSMul, fieldRange_subtype, coe_subtype, mem_iSup_of_directed, NumberField.isTotallyReal_maximalRealSubfield, one_mem, coe_inf, le_extendScalars_iff, FixedPoints.toAlgAut_surjective, relrank_dvd_rank_top_of_le, FixedPoints.isIntegral, RingHom.coe_fieldRange, RingHom.rangeRestrictFieldEquiv_apply_symm_apply, mem_toAddSubgroup, mem_mk, FixedPoints.smul_polynomial, NumberField.IsCMField.ringOfIntegersComplexConj_eq_self_iff, extendScalars_le_iff, NumberField.IsCMField.mem_realUnits_iff, charP, coe_sInf, extendScalars.orderIso_apply, relrank_top_right, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, coe_toSubring, relrank_eq_rank_of_le, RingHom.rangeRestrictField_bijective, NumberField.IsCMField.exists_isConj, FixedPoints.toAlgHom_bijective, mem_bot_iff_intCast, isClosed_topologicalClosure, IsGaloisGroup.fixedPoints, coe_sSup_of_directedOn, extendScalars_sup, relfinrank_dvd_finrank_top_of_le, closure_eq, NumberField.IsCMField.complexConj_eq_self_iff, expChar, mem_toSubmonoid, instIsScalarTowerSubtypeMem, lift_rank_comap, FixedPoints.minpoly_eq_minpoly, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, RingHom.mem_fieldRange, coe_div, subset_closure, coe_toAddSubgroup, FixedPoints.toAlgAut_bijective, FixedPoints.smul, NumberField.IsCMField.infinitePlace_complexConj, FixedPoints.smulCommClass', RingHom.mem_eqLocusField, IsGalois.of_fixed_field, FixedPoints.coe_algebraMap, card_bot, extendScalars.orderIso_symm_apply_coe, mem_map, RingHom.rangeRestrictFieldEquiv_apply_coe, coe_map, extendScalars_self, intCast_mem, mem_extendScalars, subtype_injective, completableTopField, coe_sub, NumberField.instIsAlgebraicSubtypeMemSubfield, NumberField.IsCMField.complexConj_torsion, mem_carrier, coe_neg, NumberField.IsCMField.Units.complexConj_eq_self_iff, toIsStrictOrderedRing, coe_toSubmonoid, coe_extendScalars, extendScalars_injective, NumberField.IsCMField.regOfFamily_realFunSystem, mem_comap, FixedBy.subfield_mem_iff, IntermediateField.adjoin_contains_field_as_subfield
subtype πŸ“–CompOp
9 mathmath: FixedPoints.minpoly.evalβ‚‚', algebraMap_ofSubfield, subtype_apply, fieldRange_subtype, coe_subtype, Complex.uniformContinuous_ringHom_eq_id_or_conj, toSubring_subtype_eq_subtype, FixedPoints.coe_algebraMap, subtype_injective
toAddSubgroup πŸ“–CompOp
2 mathmath: mem_toAddSubgroup, coe_toAddSubgroup
toDivisionRing πŸ“–CompOp
10 mathmath: FixedPoints.instFiniteDimensionalSubtypeMemSubfieldSubfield, FixedPoints.minpoly.evalβ‚‚', RingHom.coe_rangeRestrictField, subtype_apply, continuousSMul, fieldRange_subtype, coe_subtype, RingHom.rangeRestrictField_bijective, Complex.uniformContinuous_ringHom_eq_id_or_conj, subtype_injective
toField πŸ“–CompOp
69 mathmath: rank_comap, FixedPoints.finrank_eq_card, FixedPoints.minpoly.monic, FixedPoints.minpoly.irreducible, NumberField.IsCMField.isConj_complexConj, NumberField.instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic, FixedPoints.isSeparable, NumberField.IsCMField.equivInfinitePlace_symm_apply, NumberField.IsCMField.units_rank_eq_units_rank, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, relfinrank_mul_finrank_top, extendScalars_toSubfield, relfinrank_eq_finrank_of_le, splits_bot, NumberField.isTotallyReal_sup, FixedPoints.rank_le_card, NumberField.isTotallyReal_top_iff, relrank_mul_rank_top, IntermediateField.subset_adjoin_of_subset_left, NumberField.IsCMField.isQuadraticExtension, isTotallyReal_bot, NumberField.IsCMField.regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, extendScalars_le_extendScalars_iff, FixedPoints.normal, extendScalars_inf, finrank_comap, NumberField.instIsTotallyRealSubtypeMemSubfieldTop, FixedPoints.finrank_le_card, NumberField.of_subfield, NumberField.IsCMField.coe_ringOfIntegersComplexConj, NumberField.IsCMField.equivInfinitePlace_apply, NumberField.IsCMField.is_quadratic, NumberField.CMExtension.equivMaximalRealSubfield_apply, NumberField.isTotallyReal_iff_le_maximalRealSubfield, roots_X_pow_char_sub_X_bot, relfinrank_top_right, NumberField.IsCMField.card_infinitePlace_eq_card_infinitePlace, extendScalars_top, NumberField.isTotallyReal_maximalRealSubfield, le_extendScalars_iff, relrank_dvd_rank_top_of_le, FixedPoints.isIntegral, FixedPoints.smul_polynomial, NumberField.IsCMField.ringOfIntegersComplexConj_eq_self_iff, extendScalars_le_iff, NumberField.IsCMField.mem_realUnits_iff, extendScalars.orderIso_apply, relrank_top_right, relrank_eq_rank_of_le, NumberField.IsCMField.exists_isConj, extendScalars_sup, relfinrank_dvd_finrank_top_of_le, lift_rank_comap, FixedPoints.minpoly_eq_minpoly, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, FixedPoints.smul, IsGalois.of_fixed_field, extendScalars.orderIso_symm_apply_coe, extendScalars_self, mem_extendScalars, completableTopField, NumberField.instIsAlgebraicSubtypeMemSubfield, NumberField.IsCMField.Units.complexConj_eq_self_iff, toIsStrictOrderedRing, coe_extendScalars, extendScalars_injective, NumberField.IsCMField.regOfFamily_realFunSystem, FixedPoints.minpoly.of_evalβ‚‚, IntermediateField.adjoin_contains_field_as_subfield
toSubring πŸ“–CompOp
11 mathmath: mem_toSubring, subring_closure_le, coe_inf, sInf_toSubring, coe_toSubring, toSubring_subtype_eq_subtype, mem_toSubmonoid, mem_carrier, FixedPoints.minpoly.evalβ‚‚, coe_toSubmonoid, instIsInvariantSubringOfIsInvariantSubfield

Theorems

NameKindAssumesProvesValidatesDepends On
add_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_add πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instRingSubtypeMem
DivisionRing.toRing
β€”β€”
coe_copy πŸ“–mathematicalSetLike.coe
Subfield
instSetLike
copyβ€”β€”
coe_div πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
instDivSubtypeMem
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”β€”
coe_inv πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
instInvSubtypeMem
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”β€”
coe_mul πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instRingSubtypeMem
DivisionRing.toRing
β€”β€”
coe_neg πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
SubringClass.toNegMemClass
SubfieldClass.toSubringClass
instSubfieldClass
β€”SubringClass.toNegMemClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_one πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
OneMemClass.one
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
β€”AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_set_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subring.toSubsemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
SetLike.coe
Subfield
instSetLike
Subring
Subring.instSetLike
β€”β€”
coe_sub πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
AddSubgroupClass.sub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
SubNegMonoid.toSub
β€”SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Subfield
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
toDivisionRing
RingHom.instFunLike
subtype
β€”β€”
coe_toAddSubgroup πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
AddSubgroup.instSetLike
toAddSubgroup
Subfield
instSetLike
β€”β€”
coe_toSubmonoid πŸ“–mathematicalβ€”SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Submonoid.instSetLike
Subsemiring.toSubmonoid
Subring.toSubsemiring
toSubring
Subfield
instSetLike
β€”β€”
coe_toSubring πŸ“–mathematicalβ€”SetLike.coe
Subring
DivisionRing.toRing
Subring.instSetLike
toSubring
Subfield
instSetLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
copy_eq πŸ“–mathematicalSetLike.coe
Subfield
instSetLike
copyβ€”SetLike.coe_injective
div_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”div_mem
SubfieldClass.toSubgroupClass
instSubfieldClass
ext πŸ“–β€”Subfield
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
β€”ext
instSubfieldClass πŸ“–mathematicalβ€”SubfieldClass
Subfield
instSetLike
β€”Subsemigroup.mul_mem'
Submonoid.one_mem'
Subsemiring.add_mem'
Subsemiring.zero_mem'
Subring.neg_mem'
inv_mem'
intCast_mem πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”intCast_mem
SubfieldClass.toSubringClass
instSubfieldClass
inv_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”InvMemClass.inv_mem
SubfieldClass.toInvMemClass
instSubfieldClass
inv_mem' πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subring.toSubsemiring
toSubring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”β€”
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subring.toSubsemiring
toSubring
Subfield
SetLike.instMembership
instSetLike
β€”β€”
mem_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subring.toSubsemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
Subfield
SetLike.instMembership
instSetLike
Subring
Subring.instSetLike
β€”β€”
mem_toAddSubgroup πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
SetLike.instMembership
AddSubgroup.instSetLike
toAddSubgroup
Subfield
instSetLike
β€”β€”
mem_toSubmonoid πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
SetLike.instMembership
Submonoid.instSetLike
Subsemiring.toSubmonoid
Subring.toSubsemiring
toSubring
Subfield
instSetLike
β€”β€”
mem_toSubring πŸ“–mathematicalβ€”Subring
DivisionRing.toRing
SetLike.instMembership
Subring.instSetLike
toSubring
Subfield
instSetLike
β€”β€”
mk_le_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subring.toSubsemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
Subfield
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subring
Subring.instPartialOrder
β€”β€”
mul_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
SubfieldClass.toSubgroupClass
instSubfieldClass
neg_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
β€”NegMemClass.neg_mem
SubringClass.toNegMemClass
SubfieldClass.toSubringClass
instSubfieldClass
one_mem πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
pow_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
β€”pow_mem
SubgroupClass.toSubmonoidClass
SubfieldClass.toSubgroupClass
instSubfieldClass
sub_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”sub_mem
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Subfield
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
toDivisionRing
RingHom.instFunLike
subtype
β€”β€”
subtype_injective πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
toDivisionRing
RingHom.instFunLike
subtype
β€”Subtype.coe_injective
toSubring_subtype_eq_subtype πŸ“–mathematicalβ€”Subring.subtype
DivisionRing.toRing
toSubring
subtype
β€”β€”
zero_mem πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass
zpow_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
β€”zpow_mem
SubfieldClass.toSubgroupClass
instSubfieldClass
zsmul_mem πŸ“–mathematicalSubfield
SetLike.instMembership
instSetLike
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”zsmul_mem
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
instSubfieldClass

SubfieldClass

Definitions

NameCategoryTheorems
instNNRatCast πŸ“–CompOp
2 mathmath: coe_nnratCast, NumberField.linearDisjoint_of_isGalois_isCoprime_discr
instRatCast πŸ“–CompOp
2 mathmath: coe_ratCast, NumberField.linearDisjoint_of_isGalois_isCoprime_discr
instSMulNNRat πŸ“–CompOp
2 mathmath: coe_nnqsmul, NumberField.linearDisjoint_of_isGalois_isCoprime_discr
instSMulRat πŸ“–CompOp
2 mathmath: coe_qsmul, NumberField.linearDisjoint_of_isGalois_isCoprime_discr
toDivisionRing πŸ“–CompOp
1 mathmath: NumberField.linearDisjoint_of_isGalois_isCoprime_discr
toField πŸ“–CompOp
3 mathmath: IntermediateField.coe_add, IntermediateField.coe_mul, toIntermediateField'_toSubalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
coe_nnqsmul πŸ“–mathematicalβ€”SetLike.instMembership
NNRat
instSMulNNRat
NNRat.smulDivisionSemiring
DivisionRing.toDivisionSemiring
β€”β€”
coe_nnratCast πŸ“–mathematicalβ€”SetLike.instMembership
NNRat.cast
instNNRatCast
DivisionRing.toNNRatCast
β€”β€”
coe_qsmul πŸ“–mathematicalβ€”SetLike.instMembership
instSMulRat
Rat.smulDivisionRing
β€”β€”
coe_ratCast πŸ“–mathematicalβ€”SetLike.instMembership
instRatCast
DivisionRing.toRatCast
β€”β€”
nnqsmul_mem πŸ“–mathematicalSetLike.instMembershipNNRat
NNRat.smulDivisionSemiring
DivisionRing.toDivisionSemiring
β€”NNRat.smul_def
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
toSubgroupClass
nnratCast_mem
nnratCast_mem πŸ“–mathematicalβ€”SetLike.instMembership
NNRat.cast
DivisionRing.toNNRatCast
β€”NNRat.cast_def
div_mem
toSubgroupClass
natCast_mem
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
toSubringClass
ofScientific_mem πŸ“–mathematicalβ€”SetLike.instMembership
NNRatCast.toOfScientific
DivisionRing.toNNRatCast
β€”nnratCast_mem
qsmul_mem πŸ“–mathematicalSetLike.instMembershipRat.smulDivisionRingβ€”Rat.smul_def
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
toSubgroupClass
ratCast_mem
ratCast_mem πŸ“–mathematicalβ€”SetLike.instMembership
DivisionRing.toRatCast
β€”Rat.cast_def
div_mem
toSubgroupClass
intCast_mem
toSubringClass
natCast_mem
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
toInvMemClass πŸ“–mathematicalβ€”InvMemClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”β€”
toSubgroupClass πŸ“–mathematicalβ€”SubgroupClass
DivisionRing.toDivInvMonoid
β€”SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
toSubringClass
toInvMemClass
toSubringClass πŸ“–mathematicalβ€”SubringClass
DivisionRing.toRing
β€”β€”

Subring

Definitions

NameCategoryTheorems
toSubfield πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
SubfieldClass πŸ“–CompData
2 mathmath: Subfield.instSubfieldClass, IntermediateField.instSubfieldClass

---

← Back to Index