| Name | Category | Theorems |
copy π | CompOp | 2 mathmath: copy_eq, coe_copy
|
instDivSubtypeMem π | CompOp | 1 mathmath: coe_div
|
instInvSubtypeMem π | CompOp | 1 mathmath: coe_inv
|
instPartialOrder π | CompOp | 20 mathmath: IntermediateField.fieldRange_le, relfinrank_eq_one_iff, closure_le, mk_le_mk, closure_mono, gc_map_comap, NumberField.isTotallyReal_iff_le_maximalRealSubfield, extendScalars_top, extendScalars.orderIso_apply, map_le_iff_le_comap, closure_preimage_le, IntermediateField.adjoin_le_subfield, NumberField.IsTotallyReal.le_maximalRealSubfield, relrank_eq_one_iff, extendScalars.orderIso_symm_apply_coe, extendScalars_self, RingHom.field_closure_preimage_le, isGLB_sInf, le_topologicalClosure, extendScalars_injective
|
instPowSubtypeMemInt π | CompOp | β |
instRingSubtypeMem π | CompOp | 10 mathmath: coe_add, splits_bot, coe_mul, roots_X_pow_char_sub_X_bot, RingHom.rangeRestrictFieldEquiv_apply_symm_apply, FixedPoints.smul_polynomial, charP, expChar, FixedPoints.smul, RingHom.rangeRestrictFieldEquiv_apply_coe
|
instSetLike π | CompOp | 164 mathmath: ext_iff, FixedPoints.instFiniteDimensionalSubtypeMemSubfieldSubfield, rank_comap, FixedPoints.finrank_eq_card, FixedPoints.minpoly.monic, HahnSeries.mem_cardSuppLTSubfield, FixedPoints.minpoly.irreducible, mem_sSup_of_directedOn, mem_sInf, NumberField.IsCMField.isConj_complexConj, NumberField.IsCMField.zpowers_complexConj_eq_top, coe_add, NumberField.instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic, closure_le, mem_toSubring, FixedPoints.isSeparable, NumberField.IsCMField.equivInfinitePlace_symm_apply, NumberField.IsCMField.units_rank_eq_units_rank, NumberField.mem_maximalRealSubfield_iff, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, FixedPoints.minpoly.evalβ', mem_top, relfinrank_mul_finrank_top, RingHom.mem_fieldRange_self, extendScalars_toSubfield, relfinrank_eq_finrank_of_le, coe_top, coe_iSup_of_directed, splits_bot, coe_mul, cardinalMk_closure_le_max, NumberField.isTotallyReal_sup, mem_closure, FixedPoints.rank_le_card, NumberField.isTotallyReal_top_iff, relrank_mul_rank_top, NumberField.IsCMField.isQuadraticExtension, instSubfieldClass, RingHom.eqOn_field_closure, NumberField.IsCMField.orderOf_complexConj, mem_bot_iff_pow_eq_self, coe_inv, isTotallyReal_bot, NumberField.IsCMField.regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, coe_zero, mem_closure_iff, IntermediateField.coe_type_toSubfield, smulCommClass_left, FixedPoints.instSMulCommClassSubtypeMemSubfieldSubfield, RingHom.coe_rangeRestrictField, extendScalars_le_extendScalars_iff, FixedPoints.normal, extendScalars_inf, finrank_comap, mem_inf, NumberField.instIsTotallyRealSubtypeMemSubfieldTop, FixedPoints.finrank_le_card, smul_def, mem_iInf, HahnSeries.cardSuppLTSubfield_carrier, NumberField.IsCMField.complexConj_apply_apply, mem_closure_of_mem, NumberField.of_subfield, NumberField.IsCMField.coe_ringOfIntegersComplexConj, NumberField.IsCMField.equivInfinitePlace_apply, IntermediateField.mem_toSubfield, NumberField.IsCMField.is_quadratic, NumberField.IsCMField.complexConj_apply_eq_self, algebraMap_ofSubfield, zero_mem, coe_iInf, NumberField.IsCMField.complexEmbedding_complexConj, coe_comap, NumberField.CMExtension.equivMaximalRealSubfield_apply, NumberField.isTotallyReal_iff_le_maximalRealSubfield, subtype_apply, roots_X_pow_char_sub_X_bot, relfinrank_top_right, NumberField.IsCMField.card_infinitePlace_eq_card_infinitePlace, coe_one, smulCommClass_right, instFaithfulSMulSubtypeMem, extendScalars_top, IntermediateField.coe_toSubfield, cardinalMk_closure, coe_set_mk, continuousSMul, fieldRange_subtype, coe_subtype, mem_iSup_of_directed, NumberField.isTotallyReal_maximalRealSubfield, one_mem, coe_inf, le_extendScalars_iff, FixedPoints.toAlgAut_surjective, relrank_dvd_rank_top_of_le, FixedPoints.isIntegral, RingHom.coe_fieldRange, RingHom.rangeRestrictFieldEquiv_apply_symm_apply, mem_toAddSubgroup, mem_mk, FixedPoints.smul_polynomial, NumberField.IsCMField.ringOfIntegersComplexConj_eq_self_iff, extendScalars_le_iff, NumberField.IsCMField.mem_realUnits_iff, charP, coe_sInf, extendScalars.orderIso_apply, relrank_top_right, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, coe_toSubring, relrank_eq_rank_of_le, RingHom.rangeRestrictField_bijective, NumberField.IsCMField.exists_isConj, FixedPoints.toAlgHom_bijective, mem_bot_iff_intCast, isClosed_topologicalClosure, IsGaloisGroup.fixedPoints, coe_sSup_of_directedOn, extendScalars_sup, relfinrank_dvd_finrank_top_of_le, closure_eq, NumberField.IsCMField.complexConj_eq_self_iff, expChar, mem_toSubmonoid, instIsScalarTowerSubtypeMem, lift_rank_comap, FixedPoints.minpoly_eq_minpoly, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, RingHom.mem_fieldRange, coe_div, subset_closure, coe_toAddSubgroup, FixedPoints.toAlgAut_bijective, FixedPoints.smul, NumberField.IsCMField.infinitePlace_complexConj, FixedPoints.smulCommClass', RingHom.mem_eqLocusField, IsGalois.of_fixed_field, FixedPoints.coe_algebraMap, card_bot, extendScalars.orderIso_symm_apply_coe, mem_map, RingHom.rangeRestrictFieldEquiv_apply_coe, coe_map, extendScalars_self, intCast_mem, mem_extendScalars, subtype_injective, completableTopField, coe_sub, NumberField.instIsAlgebraicSubtypeMemSubfield, NumberField.IsCMField.complexConj_torsion, mem_carrier, coe_neg, NumberField.IsCMField.Units.complexConj_eq_self_iff, toIsStrictOrderedRing, coe_toSubmonoid, coe_extendScalars, extendScalars_injective, NumberField.IsCMField.regOfFamily_realFunSystem, mem_comap, FixedBy.subfield_mem_iff, IntermediateField.adjoin_contains_field_as_subfield
|
subtype π | CompOp | 9 mathmath: FixedPoints.minpoly.evalβ', algebraMap_ofSubfield, subtype_apply, fieldRange_subtype, coe_subtype, Complex.uniformContinuous_ringHom_eq_id_or_conj, toSubring_subtype_eq_subtype, FixedPoints.coe_algebraMap, subtype_injective
|
toAddSubgroup π | CompOp | 2 mathmath: mem_toAddSubgroup, coe_toAddSubgroup
|
toDivisionRing π | CompOp | 10 mathmath: FixedPoints.instFiniteDimensionalSubtypeMemSubfieldSubfield, FixedPoints.minpoly.evalβ', RingHom.coe_rangeRestrictField, subtype_apply, continuousSMul, fieldRange_subtype, coe_subtype, RingHom.rangeRestrictField_bijective, Complex.uniformContinuous_ringHom_eq_id_or_conj, subtype_injective
|
toField π | CompOp | 69 mathmath: rank_comap, FixedPoints.finrank_eq_card, FixedPoints.minpoly.monic, FixedPoints.minpoly.irreducible, NumberField.IsCMField.isConj_complexConj, NumberField.instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic, FixedPoints.isSeparable, NumberField.IsCMField.equivInfinitePlace_symm_apply, NumberField.IsCMField.units_rank_eq_units_rank, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, relfinrank_mul_finrank_top, extendScalars_toSubfield, relfinrank_eq_finrank_of_le, splits_bot, NumberField.isTotallyReal_sup, FixedPoints.rank_le_card, NumberField.isTotallyReal_top_iff, relrank_mul_rank_top, IntermediateField.subset_adjoin_of_subset_left, NumberField.IsCMField.isQuadraticExtension, isTotallyReal_bot, NumberField.IsCMField.regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, extendScalars_le_extendScalars_iff, FixedPoints.normal, extendScalars_inf, finrank_comap, NumberField.instIsTotallyRealSubtypeMemSubfieldTop, FixedPoints.finrank_le_card, NumberField.of_subfield, NumberField.IsCMField.coe_ringOfIntegersComplexConj, NumberField.IsCMField.equivInfinitePlace_apply, NumberField.IsCMField.is_quadratic, NumberField.CMExtension.equivMaximalRealSubfield_apply, NumberField.isTotallyReal_iff_le_maximalRealSubfield, roots_X_pow_char_sub_X_bot, relfinrank_top_right, NumberField.IsCMField.card_infinitePlace_eq_card_infinitePlace, extendScalars_top, NumberField.isTotallyReal_maximalRealSubfield, le_extendScalars_iff, relrank_dvd_rank_top_of_le, FixedPoints.isIntegral, FixedPoints.smul_polynomial, NumberField.IsCMField.ringOfIntegersComplexConj_eq_self_iff, extendScalars_le_iff, NumberField.IsCMField.mem_realUnits_iff, extendScalars.orderIso_apply, relrank_top_right, relrank_eq_rank_of_le, NumberField.IsCMField.exists_isConj, extendScalars_sup, relfinrank_dvd_finrank_top_of_le, lift_rank_comap, FixedPoints.minpoly_eq_minpoly, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, FixedPoints.smul, IsGalois.of_fixed_field, extendScalars.orderIso_symm_apply_coe, extendScalars_self, mem_extendScalars, completableTopField, NumberField.instIsAlgebraicSubtypeMemSubfield, NumberField.IsCMField.Units.complexConj_eq_self_iff, toIsStrictOrderedRing, coe_extendScalars, extendScalars_injective, NumberField.IsCMField.regOfFamily_realFunSystem, FixedPoints.minpoly.of_evalβ, IntermediateField.adjoin_contains_field_as_subfield
|
toSubring π | CompOp | 11 mathmath: mem_toSubring, subring_closure_le, coe_inf, sInf_toSubring, coe_toSubring, toSubring_subtype_eq_subtype, mem_toSubmonoid, mem_carrier, FixedPoints.minpoly.evalβ, coe_toSubmonoid, instIsInvariantSubringOfIsInvariantSubfield
|