Documentation Verification Report

Finset

πŸ“ Source: Mathlib/Algebra/GCDMonoid/Finset.lean

Statistics

MetricCount
Definitionsgcd, lcm
2
Theoremsdvd_gcd, dvd_gcd_iff, dvd_lcm, extract_gcd, extract_gcd', gcd_congr, gcd_def, gcd_div_eq_one, gcd_div_id_eq_one, gcd_dvd, gcd_empty, gcd_eq_gcd_filter_ne_zero, gcd_eq_gcd_image, gcd_eq_of_dvd_sub, gcd_eq_zero_iff, gcd_image, gcd_insert, gcd_mono, gcd_mono_fun, gcd_mul_left, gcd_mul_right, gcd_ne_zero_iff, gcd_singleton, gcd_union, lcm_congr, lcm_def, lcm_dvd, lcm_dvd_iff, lcm_empty, lcm_eq_lcm_image, lcm_eq_zero_iff, lcm_image, lcm_insert, lcm_mono, lcm_mono_fun, lcm_ne_zero_iff, lcm_singleton, lcm_union, normalize_gcd, normalize_lcm
40
Total42

Finset

Definitions

NameCategoryTheorems
gcd πŸ“–CompOp
24 mathmath: gcd_empty, gcd_dvd, Polynomial.content_eq_gcd_range_of_lt, dvd_gcd, gcd_eq_zero_iff, extract_gcd, gcd_image, gcd_def, gcd_congr, gcd_mul_left, gcd_eq_gcd_filter_ne_zero, gcd_mono, dvd_gcd_iff, gcd_union, gcd_singleton, gcd_insert, gcd_eq_of_dvd_sub, gcd_div_id_eq_one, gcd_mul_right, gcd_eq_gcd_image, Polynomial.content_eq_gcd_range_succ, normalize_gcd, gcd_mono_fun, gcd_div_eq_one
lcm πŸ“–CompOp
30 mathmath: Pi.addOrderOf, Monoid.exponent_pi, lcm_singleton, lcm_dvd_prod, normalize_lcm, associated_lcm_prod, AddMonoid.exponent_pi, Function.minimalPeriod_piMap_fintype, Monoid.lcm_orderOf_eq_exponent, Monoid.lcm_orderOf_dvd_exponent, lcm_empty, lcm_def, lcm_eq_prod, Pi.orderOf, lcm_dvd, ArithmeticFunction.carmichael_finset_lcm, lcm_eq_lcm_image, lcm_image, ArithmeticFunction.carmichael_finset_prod, AddMonoid.lcm_addOrderOf_eq_exponent, lcm_mono_fun, lcm_union, ArithmeticFunction.carmichael_factorization, lcm_insert, lcm_dvd_iff, AddMonoid.lcm_addOrderOf_dvd_exponent, lcm_eq_zero_iff, lcm_mono, dvd_lcm, lcm_congr

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_gcd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
gcdβ€”dvd_gcd_iff
dvd_gcd_iff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
gcd
β€”Multiset.dvd_gcd
dvd_lcm πŸ“–mathematicalFinset
instMembership
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
lcm
β€”lcm_dvd_iff
dvd_rfl
extract_gcd πŸ“–mathematicalNonemptyMulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
gcd
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”gcd_eq_zero_iff
mul_one
gcd_eq_gcd_image
image_const
gcd_singleton
normalize_one
extract_gcd'
Mathlib.Tactic.Push.not_forall_eq
gcd_dvd
extract_gcd' πŸ“–mathematicalFinset
instMembership
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
gcd
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”mul_right_eq_selfβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
GCDMonoid.toIsCancelMulZero
normalize_gcd
gcd_mul_left
gcd_congr
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_and_eq
gcd_eq_zero_iff
gcd_congr πŸ“–mathematicalβ€”gcdβ€”fold_congr
instCommutativeGcd
instAssociativeGcd
gcd_def πŸ“–mathematicalβ€”gcd
Multiset.gcd
Multiset.map
val
β€”β€”
gcd_div_eq_one πŸ“–mathematicalFinset
instMembership
gcd
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”extract_gcd
gcd_congr
mul_div_cancel_leftβ‚€
gcd_eq_zero_iff
gcd_div_id_eq_one πŸ“–mathematicalFinset
instMembership
gcd
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”gcd_div_eq_one
gcd_dvd πŸ“–mathematicalFinset
instMembership
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
gcd
β€”dvd_gcd_iff
dvd_rfl
gcd_empty πŸ“–mathematicalβ€”gcd
Finset
instEmptyCollection
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”β€”
gcd_eq_gcd_filter_ne_zero πŸ“–mathematicalβ€”gcd
filter
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”filter_union_filter_not_eq
gcd_union
induction_on
filter_empty
filter_insert
gcd_insert
gcd_same
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
gcd_zero_left
normalize_gcd
gcd_eq_gcd_image πŸ“–mathematicalβ€”gcd
image
β€”gcd_image
gcd_eq_of_dvd_sub πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
NormalizedGCDMonoid.toGCDMonoid
gcd
β€”induction_on
instIsEmptyFalse
gcd_zero_right
gcd_insert
gcd_comm
gcd_assoc
mem_insert_of_mem
gcd_eq_of_dvd_sub_right
mem_insert_self
gcd_eq_zero_iff πŸ“–mathematicalβ€”gcd
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”gcd_def
Multiset.gcd_eq_zero_iff
mem_def
Multiset.mem_map
gcd_image πŸ“–mathematicalβ€”gcd
image
β€”induction
image_insert
gcd_insert
gcd_insert πŸ“–mathematicalβ€”gcd
Finset
instInsert
GCDMonoid.gcd
NormalizedGCDMonoid.toGCDMonoid
β€”insert_eq_of_mem
gcd_eq_right_iff
Multiset.normalize_gcd
gcd_dvd
fold_insert
instCommutativeGcd
instAssociativeGcd
gcd_mono πŸ“–mathematicalFinset
instHasSubset
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
gcd
β€”dvd_gcd
gcd_dvd
gcd_mono_fun πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
gcdβ€”dvd_gcd
Dvd.dvd.trans
gcd_dvd
gcd_mul_left πŸ“–mathematicalβ€”gcd
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
DFunLike.coe
MonoidWithZeroHom
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
β€”induction_on
MulZeroClass.mul_zero
gcd_insert
gcd_mul_left
Associated.gcd_eq_right
Associated.mul_right
normalize_associated
gcd_mul_right πŸ“–mathematicalβ€”gcd
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
DFunLike.coe
MonoidWithZeroHom
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
β€”induction_on
MulZeroClass.zero_mul
gcd_insert
gcd_mul_right
Associated.gcd_eq_right
Associated.mul_left
normalize_associated
gcd_ne_zero_iff πŸ“–mathematicalβ€”Finset
instMembership
β€”β€”
gcd_singleton πŸ“–mathematicalβ€”gcd
Finset
instSingleton
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
β€”Multiset.gcd_singleton
gcd_union πŸ“–mathematicalβ€”gcd
Finset
instUnion
GCDMonoid.gcd
NormalizedGCDMonoid.toGCDMonoid
β€”induction_on
empty_union
gcd_empty
gcd_zero_left
normalize_gcd
insert_union
gcd_insert
gcd_assoc
lcm_congr πŸ“–mathematicalβ€”lcmβ€”fold_congr
instCommutativeLcm
instAssociativeLcm
lcm_def πŸ“–mathematicalβ€”lcm
Multiset.lcm
Multiset.map
val
β€”β€”
lcm_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
lcmβ€”lcm_dvd_iff
lcm_dvd_iff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
lcm
β€”Multiset.lcm_dvd
lcm_empty πŸ“–mathematicalβ€”lcm
Finset
instEmptyCollection
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”β€”
lcm_eq_lcm_image πŸ“–mathematicalβ€”lcm
image
β€”lcm_image
lcm_eq_zero_iff πŸ“–mathematicalβ€”lcm
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finset
instMembership
β€”β€”
lcm_image πŸ“–mathematicalβ€”lcm
image
β€”induction
image_insert
lcm_insert
lcm_insert πŸ“–mathematicalβ€”lcm
Finset
instInsert
GCDMonoid.lcm
NormalizedGCDMonoid.toGCDMonoid
β€”insert_eq_of_mem
lcm_eq_right_iff
Multiset.normalize_lcm
dvd_lcm
fold_insert
instCommutativeLcm
instAssociativeLcm
lcm_mono πŸ“–mathematicalFinset
instHasSubset
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
lcm
β€”lcm_dvd
dvd_lcm
lcm_mono_fun πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
lcmβ€”lcm_dvd
Dvd.dvd.trans
dvd_lcm
lcm_ne_zero_iff πŸ“–β€”β€”β€”β€”β€”
lcm_singleton πŸ“–mathematicalβ€”lcm
Finset
instSingleton
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
β€”Multiset.lcm_singleton
lcm_union πŸ“–mathematicalβ€”lcm
Finset
instUnion
GCDMonoid.lcm
NormalizedGCDMonoid.toGCDMonoid
β€”induction_on
empty_union
lcm_empty
lcm_one_left
normalize_lcm
insert_union
lcm_insert
lcm_assoc
normalize_gcd πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
gcd
β€”Multiset.normalize_gcd
normalize_lcm πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MonoidWithZeroHom.funLike
normalize
NormalizedGCDMonoid.toNormalizationMonoid
lcm
β€”Multiset.normalize_lcm

---

← Back to Index