Documentation Verification Report

IntegrallyClosed

πŸ“ Source: Mathlib/Algebra/GCDMonoid/IntegrallyClosed.lean

Statistics

MetricCount
Definitions0
TheoremstoIsIntegrallyClosed, surj_of_gcd_domain
2
Total2

GCDMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
toIsIntegrallyClosed πŸ“–mathematicalβ€”IsIntegrallyClosedβ€”isIntegrallyClosed_iff
Localization.isLocalization
IsLocalization.surj_of_gcd_domain
Polynomial.dvd_pow_natDegree_of_evalβ‚‚_eq_zero
IsFractionRing.injective
mul_comm
isUnit_iff_dvd_one
one_pow
Dvd.dvd.trans
dvd_gcd
dvd_refl
gcd_pow_left_dvd_pow_gcd
pow_dvd_pow_of_dvd
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Units.coe_map_inv
Units.eq_mul_inv_iff_mul_eq

IsLocalization

Theorems

NameKindAssumesProvesValidatesDepends On
surj_of_gcd_domain πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”exists_mk'_eq
extract_gcd
mul_comm
mul_mk'_eq_mk'_of_mul
mk'_mul_cancel_left

---

← Back to Index