Documentation Verification Report

GradedMonoid

πŸ“ Source: Mathlib/Algebra/GradedMonoid.lean

Statistics

MetricCount
DefinitionsgCommMonoid, GradedMonoid, GCommMonoid, toCommMonoid, toGMonoid, GMonoid, gnpow, gnpowRec, toGMul, toGOne, toMonoid, GMul, mul, toMul, GOne, one, toOne, commMonoid, monoid, mul, mulAction, one, smul, instInhabitedOfDefault, instMulAction, instNatPowOfNat, instSMul, mk, mkZeroMonoidHom, tacticApply_gmonoid_gnpowRec_succ_tac, tacticApply_gmonoid_gnpowRec_zero_tac, dProd, dProdIndex, gMonoid, gMul, gOne, instCommMonoid, instMonoid, submonoid, GradedMonoid, GradedMul, GradedOne, IsHomogeneousElem, gCommMonoid, gMonoid, gMul, gOne, homogeneousSubmonoid
48
Theoremsmul_comm, gnpowRec_succ, gnpowRec_zero, gnpow_succ', gnpow_zero', mul_assoc, mul_one, one_mul, smul_eq_mul, fst_mul, fst_one, fst_pow, fst_smul, instIsScalarTower, instSMulCommClass, list_prod_map_eq_dProd, list_prod_ofFn_eq_dProd, mk_list_dProd, mk_mul_mk, mk_pow, mk_zero_pow, mk_zero_smul, smul_mk, snd_mul, snd_one, snd_pow, snd_smul, dProdIndex_cons, dProdIndex_eq_map_sum, dProdIndex_nil, dProd_cons, dProd_monoid, dProd_nil, gMonoid_gnpow, gMul_mul, gOne_one, coe_mul, coe_one, coe_pow, coe_submonoid, toGradedMul, toGradedOne, mul_mem, one_mem, mul, coe_gMul, coe_gOne, coe_gnpow, coe_list_dProd, isHomogeneousElem_coe, isHomogeneousElem_one, list_dProd_eq, list_prod_map_mem_graded, list_prod_ofFn_mem_graded, mul_mem_graded, one_mem_graded, pow_mem_graded, prod_mem_graded, prod_pow_mem_graded
59
Total107

CommMonoid

Definitions

NameCategoryTheorems
gCommMonoid πŸ“–CompOpβ€”

GradedMonoid

Definitions

NameCategoryTheorems
GCommMonoid πŸ“–CompDataβ€”
GMonoid πŸ“–CompDataβ€”
GMul πŸ“–CompDataβ€”
GOne πŸ“–CompDataβ€”
instInhabitedOfDefault πŸ“–CompOpβ€”
instMulAction πŸ“–CompOpβ€”
instNatPowOfNat πŸ“–CompOp
1 mathmath: mk_zero_pow
instSMul πŸ“–CompOp
8 mathmath: instIsScalarTower, smul_mk, fst_smul, instSMulCommClass, smulCommClass_right, DirectSum.GAlgebra.smul_def, isScalarTower_right, snd_smul
mk πŸ“–CompOpβ€”
mkZeroMonoidHom πŸ“–CompOpβ€”
tacticApply_gmonoid_gnpowRec_succ_tac πŸ“–CompOpβ€”
tacticApply_gmonoid_gnpowRec_zero_tac πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
fst_mul πŸ“–mathematicalβ€”GradedMonoid
GMul.toMul
β€”β€”
fst_one πŸ“–mathematicalβ€”GradedMonoid
GOne.toOne
β€”β€”
fst_pow πŸ“–mathematicalβ€”GradedMonoid
Monoid.toNatPow
GMonoid.toMonoid
AddMonoid.toNatSMul
β€”β€”
fst_smul πŸ“–mathematicalβ€”GradedMonoid
instSMul
β€”β€”
instIsScalarTower πŸ“–mathematicalIsScalarTowerGradedMonoid
instSMul
β€”smul_assoc
instSMulCommClass πŸ“–mathematicalSMulCommClassGradedMonoid
instSMul
β€”SMulCommClass.smul_comm
list_prod_map_eq_dProd πŸ“–mathematicalβ€”GradedMonoid
GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GMonoid.toGMul
GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
GMonoid.toGOne
List.dProdIndex
List.dProd
β€”mk_list_dProd
Sigma.eta
list_prod_ofFn_eq_dProd πŸ“–mathematicalβ€”GradedMonoid
GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GMonoid.toGMul
GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
GMonoid.toGOne
List.dProdIndex
List.dProd
β€”List.ofFn_eq_map
list_prod_map_eq_dProd
mk_list_dProd πŸ“–mathematicalβ€”List.dProdIndex
List.dProd
GradedMonoid
GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GMonoid.toGMul
GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
GMonoid.toGOne
β€”β€”
mk_mul_mk πŸ“–mathematicalβ€”GradedMonoid
GMul.toMul
GMul.mul
β€”β€”
mk_pow πŸ“–mathematicalβ€”GradedMonoid
Monoid.toNatPow
GMonoid.toMonoid
AddMonoid.toNatSMul
GMonoid.gnpow
β€”β€”
mk_zero_pow πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instNatPowOfNat
GradedMonoid
Monoid.toNatPow
GMonoid.toMonoid
β€”nsmul_zero
mk_zero_smul πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
GradeZero.smul
GradedMonoid
GMul.toMul
AddZero.toAdd
β€”zero_add
smul_mk πŸ“–mathematicalβ€”GradedMonoid
instSMul
β€”β€”
snd_mul πŸ“–mathematicalβ€”GradedMonoid
GMul.toMul
GMul.mul
β€”β€”
snd_one πŸ“–mathematicalβ€”GradedMonoid
GOne.toOne
GOne.one
β€”β€”
snd_pow πŸ“–mathematicalβ€”GradedMonoid
Monoid.toNatPow
GMonoid.toMonoid
GMonoid.gnpow
β€”β€”
snd_smul πŸ“–mathematicalβ€”GradedMonoid
instSMul
β€”β€”

GradedMonoid.GCommMonoid

Definitions

NameCategoryTheorems
toCommMonoid πŸ“–CompOpβ€”
toGMonoid πŸ“–CompOp
1 mathmath: mul_comm

Theorems

NameKindAssumesProvesValidatesDepends On
mul_comm πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
GradedMonoid.GMonoid.toGMul
AddCommMonoid.toAddMonoid
toGMonoid
β€”β€”

GradedMonoid.GMonoid

Definitions

NameCategoryTheorems
gnpow πŸ“–CompOp
7 mathmath: Monoid.gMonoid_gnpow, GradedMonoid.mk_pow, DirectSum.ofPow, gnpow_zero', SetLike.coe_gnpow, gnpow_succ', GradedMonoid.snd_pow
gnpowRec πŸ“–CompOp
2 mathmath: gnpowRec_zero, gnpowRec_succ
toGMul πŸ“–CompOp
10 mathmath: GradedMonoid.mk_list_dProd, mul_one, GradedMonoid.list_prod_ofFn_eq_dProd, GradedMonoid.GMulAction.mul_smul, mul_assoc, List.dProd_cons, one_mul, GradedMonoid.list_prod_map_eq_dProd, gnpow_succ', GradedMonoid.GCommMonoid.mul_comm
toGOne πŸ“–CompOp
15 mathmath: GradedMonoid.mk_list_dProd, mul_one, GradedMonoid.list_prod_ofFn_eq_dProd, gnpow_zero', TensorProduct.algebraMap_gradedMul, List.dProd_nil, one_mul, GradedMonoid.list_prod_map_eq_dProd, TensorProduct.gradedMul_algebraMap, DirectSum.liftRingHom_symm_apply_coe, DirectSum.ofList_dProd, DirectSum.GAlgebra.map_one, DirectSum.list_prod_ofFn_of_eq_dProd, DirectSum.liftRingHom_apply, GradedMonoid.GMulAction.one_smul
toMonoid πŸ“–CompOp
6 mathmath: GradedMonoid.mk_zero_pow, GradedMonoid.mk_pow, GradedMonoid.smulCommClass_right, GradedMonoid.fst_pow, GradedMonoid.isScalarTower_right, GradedMonoid.snd_pow

Theorems

NameKindAssumesProvesValidatesDepends On
gnpowRec_succ πŸ“–mathematicalβ€”AddMonoid.toNatSMul
gnpowRec
GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”succ_nsmul
gnpowRec_zero πŸ“–mathematicalβ€”AddMonoid.toNatSMul
gnpowRec
GradedMonoid
GradedMonoid.GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”zero_nsmul
gnpow_succ' πŸ“–mathematicalβ€”AddMonoid.toNatSMul
gnpow
GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
toGMul
β€”β€”
gnpow_zero' πŸ“–mathematicalβ€”AddMonoid.toNatSMul
gnpow
GradedMonoid
GradedMonoid.GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
toGOne
β€”β€”
mul_assoc πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
toGMul
β€”β€”
mul_one πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
toGMul
GradedMonoid.GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
toGOne
β€”β€”
one_mul πŸ“–mathematicalβ€”GradedMonoid
GradedMonoid.GMul.toMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
toGMul
GradedMonoid.GOne.toOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
toGOne
β€”β€”

GradedMonoid.GMul

Definitions

NameCategoryTheorems
mul πŸ“–CompOp
28 mathmath: DirectSum.mulHom_of_of, GradedMonoid.mk_mul_mk, TensorPower.gMul_eq_coe_linearMap, DirectSum.gMulHom_apply_apply, TensorPower.algebraMapβ‚€_mul, TensorPower.mul_assoc, DirectSum.of_mul_of, DirectSum.GNonUnitalNonAssocSemiring.mul_zero, TensorPower.tprod_mul_tprod, DirectSum.decompose_mul_add_left, TensorPower.mul_one, SetLike.coe_gMul, TensorPower.toTensorAlgebra_gMul, DirectSum.GNonUnitalNonAssocSemiring.add_mul, DirectSum.GAlgebra.map_mul, TensorPower.algebraMapβ‚€_mul_algebraMapβ‚€, TensorPower.gMul_def, List.dProd_cons, GradedMonoid.snd_mul, TensorPower.one_mul, DirectSum.mul_eq_sum_support_ghas_mul, DirectSum.mul_eq_dfinsuppSum, TensorPower.mul_algebraMapβ‚€, DirectSum.GNonUnitalNonAssocSemiring.zero_mul, DirectSum.decompose_mul_add_right, Mul.gMul_mul, DirectSum.GNonUnitalNonAssocSemiring.mul_add, DirectSum.gMulLHom_apply_apply
toMul πŸ“–CompOp
23 mathmath: GradedMonoid.mk_mul_mk, DirectSum.GSemiring.gnpow_succ', GradedMonoid.mk_list_dProd, GradedMonoid.GMonoid.mul_one, DirectSum.GSemiring.mul_assoc, GradedMonoid.list_prod_ofFn_eq_dProd, GradedMonoid.mk_zero_smul, GradedMonoid.GMulAction.mul_smul, GradedMonoid.GMonoid.gnpowRec_succ, DirectSum.GCommRing.mul_comm, DirectSum.GSemiring.one_mul, GradedMonoid.GMonoid.mul_assoc, TensorPower.list_prod_gradedMonoid_mk_single, GradedMonoid.GMonoid.one_mul, GradedMonoid.list_prod_map_eq_dProd, GradedMonoid.fst_mul, GradedMonoid.snd_mul, DirectSum.GCommSemiring.mul_comm, DirectSum.GAlgebra.smul_def, DirectSum.GAlgebra.commutes, GradedMonoid.GMonoid.gnpow_succ', DirectSum.GSemiring.mul_one, GradedMonoid.GCommMonoid.mul_comm

GradedMonoid.GOne

Definitions

NameCategoryTheorems
one πŸ“–CompOp
15 mathmath: GradedMonoid.snd_one, DirectSum.one_def, TensorPower.algebraMapβ‚€_one, One.gOne_one, TensorPower.algebraMapβ‚€_eq_smul_one, TensorPower.mul_one, SetLike.coe_gOne, TensorPower.toTensorAlgebra_gOne, List.dProd_nil, TensorPower.gOne_def, TensorPower.one_mul, DirectSum.liftRingHom_symm_apply_coe, DirectSum.GAlgebra.map_one, DirectSum.GSemiring.natCast_succ, DirectSum.liftRingHom_apply
toOne πŸ“–CompOp
14 mathmath: GradedMonoid.mk_list_dProd, GradedMonoid.GMonoid.mul_one, GradedMonoid.list_prod_ofFn_eq_dProd, GradedMonoid.snd_one, GradedMonoid.GMonoid.gnpow_zero', GradedMonoid.fst_one, GradedMonoid.GMonoid.gnpowRec_zero, DirectSum.GSemiring.gnpow_zero', DirectSum.GSemiring.one_mul, TensorPower.list_prod_gradedMonoid_mk_single, GradedMonoid.GMonoid.one_mul, GradedMonoid.list_prod_map_eq_dProd, GradedMonoid.GMulAction.one_smul, DirectSum.GSemiring.mul_one

GradedMonoid.GradeZero

Definitions

NameCategoryTheorems
commMonoid πŸ“–CompOpβ€”
monoid πŸ“–CompOp
1 mathmath: DirectSum.of_zero_pow
mul πŸ“–CompOp
2 mathmath: smul_eq_mul, DirectSum.of_zero_mul
mulAction πŸ“–CompOpβ€”
one πŸ“–CompOp
1 mathmath: DirectSum.of_zero_one
smul πŸ“–CompOp
3 mathmath: smul_eq_mul, DirectSum.of_zero_smul, GradedMonoid.mk_zero_smul

Theorems

NameKindAssumesProvesValidatesDepends On
smul_eq_mul πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
smul
mul
β€”β€”

List

Definitions

NameCategoryTheorems
dProd πŸ“–CompOp
10 mathmath: GradedMonoid.mk_list_dProd, SetLike.coe_list_dProd, GradedMonoid.list_prod_ofFn_eq_dProd, SetLike.list_dProd_eq, dProd_nil, dProd_cons, GradedMonoid.list_prod_map_eq_dProd, DirectSum.ofList_dProd, DirectSum.list_prod_ofFn_of_eq_dProd, dProd_monoid
dProdIndex πŸ“–CompOp
11 mathmath: GradedMonoid.mk_list_dProd, SetLike.coe_list_dProd, GradedMonoid.list_prod_ofFn_eq_dProd, SetLike.list_dProd_eq, dProdIndex_nil, dProdIndex_cons, dProdIndex_eq_map_sum, dProd_cons, GradedMonoid.list_prod_map_eq_dProd, DirectSum.ofList_dProd, DirectSum.list_prod_ofFn_of_eq_dProd

Theorems

NameKindAssumesProvesValidatesDepends On
dProdIndex_cons πŸ“–mathematicalβ€”dProdIndex
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”β€”
dProdIndex_eq_map_sum πŸ“–mathematicalβ€”dProdIndex
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”
dProdIndex_nil πŸ“–mathematicalβ€”dProdIndex
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”
dProd_cons πŸ“–mathematicalβ€”dProd
GradedMonoid.GMul.mul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
GradedMonoid.GMonoid.toGMul
dProdIndex
β€”β€”
dProd_monoid πŸ“–mathematicalβ€”dProd
Monoid.gMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
β€”dProd_nil
dProd_cons
dProd_nil πŸ“–mathematicalβ€”dProd
GradedMonoid.GOne.one
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
GradedMonoid.GMonoid.toGOne
β€”β€”

Monoid

Definitions

NameCategoryTheorems
gMonoid πŸ“–CompOp
2 mathmath: gMonoid_gnpow, List.dProd_monoid

Theorems

NameKindAssumesProvesValidatesDepends On
gMonoid_gnpow πŸ“–mathematicalβ€”GradedMonoid.GMonoid.gnpow
gMonoid
toNatPow
β€”β€”

Mul

Definitions

NameCategoryTheorems
gMul πŸ“–CompOp
1 mathmath: gMul_mul

Theorems

NameKindAssumesProvesValidatesDepends On
gMul_mul πŸ“–mathematicalβ€”GradedMonoid.GMul.mul
gMul
β€”β€”

One

Definitions

NameCategoryTheorems
gOne πŸ“–CompOp
3 mathmath: DirectSum.toAddMonoidAlgebra_one, gOne_one, AddMonoidAlgebra.toDirectSum_one

Theorems

NameKindAssumesProvesValidatesDepends On
gOne_one πŸ“–mathematicalβ€”GradedMonoid.GOne.one
gOne
β€”β€”

SetLike

Definitions

NameCategoryTheorems
GradedMonoid πŸ“–CompData
10 mathmath: GradedRing.toGradedMonoid, CliffordAlgebra.evenOdd.gradedMonoid, MvPolynomial.IsHomogeneous.HomogeneousSubmodule.gcommSemiring, ExteriorAlgebra.instGradedMonoidNatSubmoduleExteriorPower, AddMonoidAlgebra.gradeBy.gradedMonoid, Submodule.nat_power_gradedMonoid, IsRingFiltration.toGradedMonoid, MvPolynomial.HomogeneousSubmodule.gradedMonoid, AddMonoidAlgebra.grade.gradedMonoid, MvPolynomial.WeightedHomogeneousSubmodule.gradedMonoid
GradedMul πŸ“–CompData
1 mathmath: GradedMonoid.toGradedMul
GradedOne πŸ“–CompData
1 mathmath: GradedMonoid.toGradedOne
IsHomogeneousElem πŸ“–MathDef
4 mathmath: GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, homogeneous_zero_submodule, isHomogeneousElem_coe, isHomogeneousElem_one
gCommMonoid πŸ“–CompOpβ€”
gMonoid πŸ“–CompOp
3 mathmath: coe_list_dProd, list_dProd_eq, coe_gnpow
gMul πŸ“–CompOp
3 mathmath: DirectSum.decompose_mul_add_left, coe_gMul, DirectSum.decompose_mul_add_right
gOne πŸ“–CompOp
5 mathmath: DirectSum.decompose_symm_one, listProd_apply_eq_zero', coe_gOne, listProd_apply_eq_zero, DirectSum.decompose_one
homogeneousSubmonoid πŸ“–CompOp
1 mathmath: Ideal.IsHomogeneous.iff_exists

Theorems

NameKindAssumesProvesValidatesDepends On
coe_gMul πŸ“–mathematicalβ€”instMembership
GradedMonoid.GMul.mul
gMul
β€”β€”
coe_gOne πŸ“–mathematicalβ€”instMembership
GradedMonoid.GOne.one
gOne
β€”β€”
coe_gnpow πŸ“–mathematicalβ€”instMembership
AddMonoid.toNatSMul
GradedMonoid.GMonoid.gnpow
gMonoid
Monoid.toNatPow
β€”β€”
coe_list_dProd πŸ“–mathematicalβ€”instMembership
List.dProdIndex
List.dProd
gMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
β€”List.dProd_nil
GradedMonoid.toGradedOne
coe_gOne
List.dProd_cons
GradedMonoid.toGradedMul
coe_gMul
isHomogeneousElem_coe πŸ“–mathematicalβ€”IsHomogeneousElem
instMembership
β€”Subtype.prop
isHomogeneousElem_one πŸ“–mathematicalβ€”IsHomogeneousElemβ€”one_mem_graded
list_dProd_eq πŸ“–mathematicalβ€”List.dProd
instMembership
gMonoid
List.dProdIndex
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
list_prod_map_mem_graded
Subtype.prop
List.dProdIndex_eq_map_sum
β€”list_prod_map_mem_graded
Subtype.prop
List.dProdIndex_eq_map_sum
coe_list_dProd
list_prod_map_mem_graded πŸ“–mathematicalinstMembershipAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
β€”one_mem_graded
GradedMonoid.toGradedOne
mul_mem_graded
GradedMonoid.toGradedMul
list_prod_ofFn_mem_graded πŸ“–mathematicalinstMembershipAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
β€”List.ofFn_eq_map
list_prod_map_mem_graded
mul_mem_graded πŸ“–β€”instMembershipβ€”β€”GradedMul.mul_mem
one_mem_graded πŸ“–mathematicalβ€”instMembershipβ€”GradedOne.one_mem
pow_mem_graded πŸ“–mathematicalinstMembershipAddMonoid.toNatSMul
Monoid.toNatPow
β€”pow_zero
zero_nsmul
one_mem_graded
GradedMonoid.toGradedOne
pow_succ'
succ_nsmul'
mul_mem_graded
GradedMonoid.toGradedMul
prod_mem_graded πŸ“–mathematicalinstMembershipFinset.sum
Finset.prod
β€”Finset.induction_on
GradedMonoid.toGradedOne
Finset.prod_insert
Finset.sum_insert
mul_mem_graded
GradedMonoid.toGradedMul
prod_pow_mem_graded πŸ“–mathematicalinstMembershipFinset.sum
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Finset.prod
Monoid.toNatPow
CommMonoid.toMonoid
β€”prod_mem_graded
pow_mem_graded

SetLike.GradeZero

Definitions

NameCategoryTheorems
instCommMonoid πŸ“–CompOpβ€”
instMonoid πŸ“–CompOp
4 mathmath: coe_pow, coe_mul, AlgebraicGeometry.Proj.lift_awayMapₐ_awayMapₐ_surjective, coe_one
submonoid πŸ“–CompOp
1 mathmath: coe_submonoid

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mul πŸ“–mathematicalβ€”SetLike.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
β€”β€”
coe_one πŸ“–mathematicalβ€”SetLike.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
β€”β€”
coe_pow πŸ“–mathematicalβ€”SetLike.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Monoid.toNatPow
instMonoid
β€”β€”
coe_submonoid πŸ“–mathematicalβ€”SetLike.coe
Submonoid
Monoid.toMulOneClass
Submonoid.instSetLike
submonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”

SetLike.GradedMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
toGradedMul πŸ“–mathematicalβ€”SetLike.GradedMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”β€”
toGradedOne πŸ“–mathematicalβ€”SetLike.GradedOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”

SetLike.GradedMul

Theorems

NameKindAssumesProvesValidatesDepends On
mul_mem πŸ“–β€”SetLike.instMembershipβ€”β€”β€”

SetLike.GradedOne

Theorems

NameKindAssumesProvesValidatesDepends On
one_mem πŸ“–mathematicalβ€”SetLike.instMembershipβ€”β€”

SetLike.IsHomogeneousElem

Theorems

NameKindAssumesProvesValidatesDepends On
mul πŸ“–β€”SetLike.IsHomogeneousElemβ€”β€”SetLike.mul_mem_graded

(root)

Definitions

NameCategoryTheorems
GradedMonoid πŸ“–CompOp
41 mathmath: GradedMonoid.mk_mul_mk, DirectSum.GSemiring.gnpow_succ', GradedMonoid.mk_list_dProd, GradedMonoid.mk_zero_pow, GradedMonoid.mk_pow, GradedMonoid.GMonoid.mul_one, DirectSum.GSemiring.mul_assoc, GradedMonoid.instIsScalarTower, GradedMonoid.list_prod_ofFn_eq_dProd, GradedMonoid.snd_one, GradedMonoid.smul_mk, GradedMonoid.GMonoid.gnpow_zero', GradedMonoid.fst_smul, GradedMonoid.fst_one, GradedMonoid.instSMulCommClass, GradedMonoid.GMonoid.gnpowRec_zero, GradedMonoid.mk_zero_smul, GradedMonoid.smulCommClass_right, GradedMonoid.fst_pow, GradedMonoid.GMulAction.mul_smul, GradedMonoid.GMonoid.gnpowRec_succ, DirectSum.GCommRing.mul_comm, DirectSum.GSemiring.gnpow_zero', DirectSum.GSemiring.one_mul, GradedMonoid.GMonoid.mul_assoc, TensorPower.list_prod_gradedMonoid_mk_single, GradedMonoid.GMonoid.one_mul, GradedMonoid.list_prod_map_eq_dProd, GradedMonoid.fst_mul, GradedMonoid.snd_mul, DirectSum.GCommSemiring.mul_comm, DirectSum.GAlgebra.smul_def, DirectSum.GAlgebra.commutes, GradedMonoid.GMonoid.gnpow_succ', GradedMonoid.isScalarTower_right, GradedMonoid.GMulAction.one_smul, GradedMonoid.mk_smul_mk, DirectSum.GSemiring.mul_one, GradedMonoid.snd_pow, GradedMonoid.GCommMonoid.mul_comm, GradedMonoid.snd_smul

---

← Back to Index