Documentation Verification Report

Divisibility

πŸ“ Source: Mathlib/Algebra/GroupWithZero/Divisibility.lean

Statistics

MetricCount
DefinitionsDvdNotUnit
1
Theoremsantisymm, antisymm', dvd_iff, mul, ne_zero_or_ne_zero, dvdNotUnit_of_dvd_of_not_dvd, dvd_and_not_dvd_iff, dvd_antisymm, dvd_antisymm', dvd_zero, eq_of_forall_dvd, eq_of_forall_dvd', eq_zero_of_zero_dvd, isPrimal_zero, isRelPrime_of_no_nonunits_factors, isRelPrime_zero_left, isRelPrime_zero_right, mul_dvd_mul_iff_left, mul_dvd_mul_iff_right, ne_zero_of_dvd_ne_zero, not_isRelPrime_zero_zero, pow_dvd_pow_iff, zero_dvd_iff
23
Total24

Dvd.dvd

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
β€”β€”dvd_antisymm
antisymm' πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
β€”β€”dvd_antisymm'

GroupWithZero

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_iff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”MulZeroClass.zero_mul
eq_or_ne
MulZeroClass.mul_zero
mul_inv_cancel_leftβ‚€

IsPrimal

Theorems

NameKindAssumesProvesValidatesDepends On
mul πŸ“–mathematicalIsPrimal
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”eq_or_ne
MulZeroClass.zero_mul
dvd_of_mul_right_dvd
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
mul_mul_mul_comm
mul_dvd_mul_left

IsRelPrime

Theorems

NameKindAssumesProvesValidatesDepends On
ne_zero_or_ne_zero πŸ“–β€”IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”β€”not_or_of_imp
not_isRelPrime_zero_zero

(root)

Definitions

NameCategoryTheorems
DvdNotUnit πŸ“–MathDef
12 mathmath: Associates.mk_dvdNotUnit_mk_iff, wellFounded_dvdNotUnit, Associates.dvdNotUnit_of_lt, dvd_and_not_dvd_iff, Nat.dvdNotUnit_setGcd_insert, Valuation.Integers.dvdNotUnit_iff_lt, Associates.dvdNotUnit_iff_lt, dvdNotUnit_of_dvd_of_not_dvd, Ideal.span_singleton_lt_span_singleton, Ideal.dvdNotUnit_iff_lt, UniqueFactorizationMonoid.toIsWellFounded, UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors

Theorems

NameKindAssumesProvesValidatesDepends On
dvdNotUnit_of_dvd_of_not_dvd πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
DvdNotUnitβ€”dvd_zero
dvd_and_not_dvd_iff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
DvdNotUnit
β€”isUnit_iff_dvd_one
mul_assoc
mul_one
isUnit_of_dvd_one
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
dvd_antisymm πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
β€”β€”mul_eq_one
mul_right_eq_selfβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
mul_assoc
mul_one
MulZeroClass.zero_mul
dvd_antisymm' πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
β€”β€”dvd_antisymm
dvd_zero πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
β€”Dvd.intro
MulZeroClass.mul_zero
eq_of_forall_dvd πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
β€”β€”Dvd.dvd.antisymm
dvd_rfl
eq_of_forall_dvd' πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
β€”β€”Dvd.dvd.antisymm
dvd_rfl
eq_zero_of_zero_dvd πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
β€”β€”Dvd.elim
MulZeroClass.zero_mul
isPrimal_zero πŸ“–mathematicalβ€”IsPrimal
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”dvd_rfl
zero_dvd_iff
isRelPrime_of_no_nonunits_factors πŸ“–mathematicalMulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
IsRelPrime
MonoidWithZero.toMonoid
β€”by_contra
zero_dvd_iff
isRelPrime_zero_left πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
IsUnit
β€”dvd_zero
dvd_rfl
IsUnit.isRelPrime_right
isRelPrime_zero_right πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
IsUnit
β€”isRelPrime_comm
isRelPrime_zero_left
mul_dvd_mul_iff_left πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”mul_assoc
mul_right_inj'
mul_dvd_mul_iff_right πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”mul_right_comm
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
ne_zero_of_dvd_ne_zero πŸ“–β€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
β€”β€”left_ne_zero_of_mul
not_isRelPrime_zero_zero πŸ“–mathematicalβ€”IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”isRelPrime_zero_right
not_isUnit_zero
pow_dvd_pow_iff πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Monoid.toNatPow
β€”not_lt
pow_succ
mul_one
Dvd.dvd.trans
pow_dvd_pow
isUnit_iff_dvd_one
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
pow_ne_zero
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
zero_dvd_iff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
β€”eq_zero_of_zero_dvd
MulZeroClass.mul_zero

---

← Back to Index