Documentation Verification Report

InjSurj

πŸ“ Source: Mathlib/Algebra/GroupWithZero/InjSurj.lean

Statistics

MetricCount
DefinitionscommGroupWithZero, commMonoidWithZero, groupWithZero, monoidWithZero, mulZeroClass, mulZeroOneClass, semigroupWithZero, commGroupWithZero, commMonoidWithZero, groupWithZero, monoidWithZero, mulZeroClass, mulZeroOneClass, semigroupWithZero
14
TheoremsisCancelMulZero, isLeftCancelMulZero, isRightCancelMulZero, noZeroDivisors
4
Total18

Function.Injective

Definitions

NameCategoryTheorems
commGroupWithZero πŸ“–CompOpβ€”
commMonoidWithZero πŸ“–CompOpβ€”
groupWithZero πŸ“–CompOpβ€”
monoidWithZero πŸ“–CompOpβ€”
mulZeroClass πŸ“–CompOpβ€”
mulZeroOneClass πŸ“–CompOpβ€”
semigroupWithZero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isCancelMulZero πŸ“–mathematicalβ€”IsCancelMulZeroβ€”isLeftCancelMulZero
IsCancelMulZero.toIsLeftCancelMulZero
isRightCancelMulZero
IsCancelMulZero.toIsRightCancelMulZero
isLeftCancelMulZero πŸ“–mathematicalβ€”IsLeftCancelMulZeroβ€”mul_left_cancelβ‚€
isRightCancelMulZero πŸ“–mathematicalβ€”IsRightCancelMulZeroβ€”mul_right_cancelβ‚€
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisorsβ€”NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero

Function.Surjective

Definitions

NameCategoryTheorems
commGroupWithZero πŸ“–CompOpβ€”
commMonoidWithZero πŸ“–CompOpβ€”
groupWithZero πŸ“–CompOpβ€”
monoidWithZero πŸ“–CompOpβ€”
mulZeroClass πŸ“–CompOpβ€”
mulZeroOneClass πŸ“–CompOpβ€”
semigroupWithZero πŸ“–CompOpβ€”

---

← Back to Index