Documentation Verification Report

Invertible

πŸ“ Source: Mathlib/Algebra/GroupWithZero/Invertible.lean

Statistics

MetricCount
DefinitionsinvertibleDiv, invertibleInv, invertibleOfNonzero
3
Theoremsne_zero, toNeZero, inverse_invertible, div_mul_cancel_of_invertible, div_self_of_invertible, invOf_div, invOf_eq_inv, inv_mul_cancel_of_invertible, mul_div_cancel_of_invertible, mul_inv_cancel_of_invertible
10
Total13

Invertible

Theorems

NameKindAssumesProvesValidatesDepends On
ne_zero πŸ“–β€”β€”β€”β€”zero_ne_one
NeZero.one
MulZeroClass.mul_zero
invOf_mul_self
toNeZero πŸ“–mathematicalβ€”MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”ne_zero

Ring

Theorems

NameKindAssumesProvesValidatesDepends On
inverse_invertible πŸ“–mathematicalβ€”inverse
Invertible.invOf
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”inverse_unit

(root)

Definitions

NameCategoryTheorems
invertibleDiv πŸ“–CompOpβ€”
invertibleInv πŸ“–CompOpβ€”
invertibleOfNonzero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
div_mul_cancel_of_invertible πŸ“–mathematicalβ€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”div_mul_cancelβ‚€
Invertible.ne_zero
GroupWithZero.toNontrivial
div_self_of_invertible πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”div_self
Invertible.ne_zero
GroupWithZero.toNontrivial
invOf_div πŸ“–mathematicalβ€”Invertible.invOf
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”invOf_eq_right_inv
div_mul_cancel_of_invertible
div_self_of_invertible
invOf_eq_inv πŸ“–mathematicalβ€”Invertible.invOf
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
InvOneClass.toInv
β€”invOf_eq_right_inv
mul_inv_cancelβ‚€
Invertible.ne_zero
GroupWithZero.toNontrivial
inv_mul_cancel_of_invertible πŸ“–mathematicalβ€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
InvOneClass.toOne
β€”inv_mul_cancelβ‚€
Invertible.ne_zero
GroupWithZero.toNontrivial
mul_div_cancel_of_invertible πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
β€”mul_div_cancel_rightβ‚€
GroupWithZero.toMulDivCancelClass
Invertible.ne_zero
GroupWithZero.toNontrivial
mul_inv_cancel_of_invertible πŸ“–mathematicalβ€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
InvOneClass.toOne
β€”mul_inv_cancelβ‚€
Invertible.ne_zero
GroupWithZero.toNontrivial

---

← Back to Index