Documentation Verification Report

NonZeroDivisors

πŸ“ Source: Mathlib/Algebra/GroupWithZero/NonZeroDivisors.lean

Statistics

MetricCount
DefinitionsassociatesNonZeroDivisorsEquiv, instLeftCancelMonoidSubtypeMemSubmonoidNonZeroDivisorsOfIsLeftCancelMulZero, instRightCancelMonoidSubtypeMemSubmonoidNonZeroDivisorsOfIsRightCancelMulZero, nonZeroDivisors, «term_⁰», nonZeroDivisorsEquivUnits, nonZeroDivisorsLeft, nonZeroDivisorsRight, nonZeroSMulDivisors, «term_⁰[_]», unitsNonZeroDivisorsEquiv
11
Theoremscoe_ne_zero, mem_nonZeroDivisorsLeft, mem_nonZeroDivisors, mem_nonZeroDivisorsRight, mem_nonZeroSMulDivisors, mem_nonZeroDivisors, map_nonZeroDivisors, associatesNonZeroDivisorsEquiv_mk_mk, associatesNonZeroDivisorsEquiv_symm_mk_mk, coe_nonZeroDivisorsLeft_eq, coe_nonZeroDivisorsRight_eq, comap_nonZeroDivisors_le_of_injective, eq_zero_of_ne_zero_of_mul_left_eq_zero, eq_zero_of_ne_zero_of_mul_right_eq_zero, isSMulRegular_iff_mem_nonZeroSMulDivisors, isUnit_le_nonZeroDivisors, isUnit_of_mem_nonZeroDivisors, le_nonZeroDivisors_of_noZeroDivisors, map_le_nonZeroDivisors_of_injective, map_mem_nonZeroDivisors, map_ne_zero_of_mem_nonZeroDivisors, mem_nonZeroDivisorsLeft_iff, mem_nonZeroDivisorsRight_iff, mem_nonZeroDivisors_iff, mem_nonZeroDivisors_iff', mem_nonZeroDivisors_iff_ne_zero, mem_nonZeroDivisors_iff_right, mem_nonZeroDivisors_of_injective, mem_nonZeroDivisors_of_ne_zero, mem_nonZeroSMulDivisors_iff, mk_mem_nonZeroDivisors_associates, mul_left_coe_nonZeroDivisors_eq_zero_iff, mul_left_mem_nonZeroDivisorsLeft_eq_zero_iff, mul_left_mem_nonZeroDivisors_eq_zero_iff, mul_mem_nonZeroDivisors, mul_mem_nonZeroDivisorsLeft_of_mem_nonZeroDivisorsLeft, mul_mem_nonZeroDivisorsRight_of_mem_nonZeroDivisorsRight, mul_mem_nonZeroDivisors_of_mem_nonZeroDivisors, mul_right_coe_nonZeroDivisors_eq_zero_iff, mul_right_mem_nonZeroDivisorsRight_eq_zero_iff, mul_right_mem_nonZeroDivisors_eq_zero_iff, noZeroDivisors_iff_forall_mem_nonZeroDivisors, noZeroDivisors_iff_forall_mem_nonZeroDivisorsLeft, noZeroDivisors_iff_forall_mem_nonZeroDivisorsRight, associated_coe, coe_ne_zero, ne_zero, nonZeroDivisorsEquivUnits_apply, nonZeroDivisorsEquivUnits_symm_apply_coe, nonZeroDivisorsLeft_eq_nonZeroDivisors, nonZeroDivisorsLeft_eq_nonZeroSMulDivisors, nonZeroDivisorsLeft_eq_right, nonZeroDivisorsRight_eq_nonZeroDivisors, nonZeroDivisors_dvd_iff_dvd_coe, nonZeroDivisors_le_comap_nonZeroDivisors_of_injective, notMem_nonZeroDivisorsLeft_iff, notMem_nonZeroDivisorsRight_iff, notMem_nonZeroDivisors_iff, notMem_nonZeroDivisors_iff_right, powers_le_nonZeroDivisors_of_noZeroDivisors, prod_mem_nonZeroDivisors_of_mem_nonZeroDivisors, unitsNonZeroDivisorsEquiv_apply, val_inv_unitsNonZeroDivisorsEquiv_symm_apply_coe, val_unitsNonZeroDivisorsEquiv_symm_apply_coe, zero_notMem_nonZeroDivisors, zero_notMem_nonZeroDivisorsLeft, zero_notMem_nonZeroDivisorsRight
67
Total78

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ne_zero πŸ“–β€”Irreducible
SetLike.instMembership
SubmonoidClass.toMonoid
MonoidWithZero.toMonoid
β€”β€”not_isUnit
isUnit_or_isUnit
MulZeroClass.mul_zero

IsLeftRegular

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nonZeroDivisorsLeft πŸ“–mathematicalIsLeftRegular
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
β€”mul_left_eq_zero_iff

IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nonZeroDivisors πŸ“–mathematicalIsRegular
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”IsLeftRegular.mem_nonZeroDivisorsLeft
left
IsRightRegular.mem_nonZeroDivisorsRight
right

IsRightRegular

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nonZeroDivisorsRight πŸ“–mathematicalIsRightRegular
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
β€”mul_right_eq_zero_iff

IsSMulRegular

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nonZeroSMulDivisors πŸ“–mathematicalIsSMulRegular
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulActionWithZero.toSMulWithZero
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroSMulDivisors
MulActionWithZero.toMulAction
β€”right_eq_zero_of_smul

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nonZeroDivisors πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”mul_right_eq_zero
mul_left_eq_zero

MulEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_nonZeroDivisors πŸ“–mathematicalβ€”Submonoid.map
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
EquivLike.toFunLike
MonoidWithZeroHomClass.toMonoidHomClass
toMonoidWithZeroHomClass
nonZeroDivisors
β€”MonoidWithZeroHomClass.toMonoidHomClass
toMonoidWithZeroHomClass
Submonoid.ext
MulEquiv.instMulEquivClass
instMonoidHomClass
Submonoid.map_equiv_eq_comap_symm
Equiv.forall_congr_right
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
MulEquiv.injective

(root)

Definitions

NameCategoryTheorems
associatesNonZeroDivisorsEquiv πŸ“–CompOp
3 mathmath: associatesNonZeroDivisorsEquiv_mk_mk, associatesNonZeroDivisorsEquiv_symm_mk_mk, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_coe
instLeftCancelMonoidSubtypeMemSubmonoidNonZeroDivisorsOfIsLeftCancelMulZero πŸ“–CompOpβ€”
instRightCancelMonoidSubtypeMemSubmonoidNonZeroDivisorsOfIsRightCancelMulZero πŸ“–CompOpβ€”
nonZeroDivisors πŸ“–CompOp
460 mathmath: nonZeroDivisors_le_comap_nonZeroDivisors_of_injective, FractionalIdeal.spanSingleton_inv_mul, DivisibleHull.archimedeanClassMk_mk_eq, RatFunc.mk_def_of_ne, RatFunc.ofFractionRing_mk', FractionalIdeal.spanSingleton_mul_inv, RatFunc.mk_coe_def, Ideal.finite_setOf_absNorm_leβ‚€, NumberField.mixedEmbedding.fundamentalCone.preimageOfMemIntegerSet_mixedEmbedding, ClassGroup.mk0_integralRep, ClassGroup.mk0_eq_mk0_iff, FractionalIdeal.isPrincipal_of_isPrincipal_num, NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, IsFractionRing.nonZeroDivisors_eq_isUnit, FractionalIdeal.map_one_div, NumberField.hermiteTheorem.minkowskiBound_lt_boundOfDiscBdd, FractionRing.instIsScalarTower, ClassGroup.Quot_mk_eq_mk, FractionalIdeal.le_dual_iff, IsDedekindRing.toIsIntegralClosure, Ring.ordFrac_eq_div, FractionalIdeal.sup_mul_inf, FractionalIdeal.instNontrivialNonZeroDivisors, NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, unitsNonZeroDivisorsEquiv_apply, WittVector.IsocrystalHom.frob_equivariant, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, NumberField.mixedEmbedding.mem_idealLattice, FractionalIdeal.isFractional_div_of_ne_zero, RatFunc.mk_smul, FractionalIdeal.invertible_of_principal, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_apply, IsIntegralClosure.isLocalization, FractionalIdeal.coe_extendedHomₐ_eq_span, mem_principal_ideals_iff, instIsScalarTowerAtPrimeFractionRing_1, instIsFractionRingAtPrimeFractionRing, FractionalIdeal.divMod_zero_left, FractionalIdeal.count_finsuppProd, IsFractionRing.mk'_eq_one_iff_eq, Rat.isFractionRingDen, MvPowerSeries.monomial_mem_nonzeroDivisors, OreLocalization.nontrivial, DivisibleHull.mk_add_mk_left, FractionalIdeal.div_one, Ideal.absNorm_pos_iff_mem_nonZeroDivisors, FractionalIdeal.spanFinset_eq_zero, IsFractionRing.mk'_eq_div, FractionalIdeal.inv_le_inv_iff, Submodule.mem_torsion_iff, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, RatFunc.liftOn_ofFractionRing_mk, FractionalIdeal.instMulPosStrictMonoNonZeroDivisors, FractionalIdeal.extendedHomₐ_coeIdeal_eq_map, FractionalIdeal.le_div_iff_mul_le, mem_nonZeroDivisors_iff, FractionalIdeal.inf_mul, FractionalIdeal.coeIdeal_inj, instIsSeparableFractionRingLocalizationAlgebraMapSubmonoidPrimeCompl, FractionalIdeal.isNoetherian_coeIdeal, instIsScalarTowerAtPrimeLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, num_isRoot_scaleRoots_of_aeval_eq_zero, IsFractionRing.exists_reduced_fraction, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, FractionalIdeal.isUnit_num, FractionalIdeal.count_coe_nonneg, FractionalIdeal.eq_zero_or_one_of_isField, isUnit_le_nonZeroDivisors, FractionalIdeal.inv_nonzero, FractionRing.algebraMap_liftAlgebra, FractionalIdeal.le_div_iff_of_ne_zero, FractionalIdeal.instMulPosReflectLENonZeroDivisors, NumberField.mixedEmbedding.fundamentalCone.integerSetQuotEquivAssociates_apply, FractionalIdeal.le_div_iff_of_nonzero, FractionalIdeal.div_of_ne_zero, instIsPushoutFractionRingPolynomial_1, FractionalIdeal.inv_eq, FractionalIdeal.mem_div_iff_of_nonzero, Ideal.absNorm_ne_zero_iff_mem_nonZeroDivisors, Rat.associated_num_den, RatFunc.mk_eq_localization_mk, coeSubmodule_differentIdeal_fractionRing, FractionalIdeal.dual_eq_dual_mul_dual, RatFunc.mk_eq_mk', NumberField.mixedEmbedding.fundamentalCone.integerSetEquiv_apply_fst, RatFunc.mk_def, FractionalIdeal.count_finprod_coprime, RatFunc.mk_eq_div', RatFunc.ofFractionRing_div, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Algebra.algebraMap_intNorm_fractionRing, FractionalIdeal.one_div_spanSingleton, FractionalIdeal.one_le_dual_one, IsFractionRing.integerNormalization_eq_zero_iff, FractionRing.instIsScalarTower_1, FractionalIdeal.fractional_div_of_nonzero, nonZeroDivisors_dvd_iff_dvd_coe, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, le_nonZeroDivisors_iff_isRegular, FractionalIdeal.mul_inv_cancel, coe_toPrincipalIdeal, IsFractionRing.instAtPrimeFractionRing, FractionalIdeal.count_prod, RatFunc.ofFractionRing_one, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_neg_mul, nonZeroDivisorsLeft_eq_nonZeroDivisors, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, IsDedekindDomain.HeightOneSpectrum.valuation_def, val_inv_unitsNonZeroDivisorsEquiv_symm_apply_coe, FractionalIdeal.count_finprod, FractionalIdeal.count_ne_zero, NumberField.det_basisOfFractionalIdeal_eq_absNorm, FractionalIdeal.absNorm_bot, mem_nonZeroDivisors_iff_right, FractionalIdeal.mul_left_strictMono, RatFunc.smul_eq_C_mul, FractionalIdeal.extendedHomₐ_injective, NumberField.RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors, Ideal.disjoint_nonZeroDivisors_of_mem_minimalPrimes, Submonoid.LocalizationMap.nonZeroDivisors_le_comap, NumberField.mixedEmbedding.span_idealLatticeBasis, RatFunc.ofFractionRing_zero, FractionalIdeal.coe_dual, differentialIdeal_le_iff, AlgebraicIndependent.lift_reprField, RatFunc.ofFractionRing_add, WittVector.IsocrystalEquiv.frob_equivariant, FractionalIdeal.div_nonzero, FractionalIdeal.canonicalEquiv_mk0, QuadraticAlgebra.star_mem_nonZeroDivisors_iff, FractionalIdeal.coe_dual_one, DivisibleHull.instIsStrictOrderedModuleNNRat, IsArtinianRing.isUnitSubmonoid_eq_of_mulOpposite, Polynomial.notMem_nonZeroDivisors_iff, IsFractionRing.mk'_num_den', PrincipalIdeals.normal, coeIdeal_differentIdeal, IsFractionRing.div_surjective, instIsScalarTowerAtPrimeFractionRing, FractionalIdeal.inv_le_dual, mul_left_coe_nonZeroDivisors_eq_zero_iff, NumberField.mixedEmbedding.covolume_idealLattice, FractionalIdeal.div_eq_mul_inv, FractionalIdeal.coe_ideal_span_singleton_div_self, dvd_cancel_right_coe_nonZeroDivisors, mul_right_coe_nonZeroDivisors_eq_zero_iff, Ideal.span_singleton_nonZeroDivisors, FractionalIdeal.mul_generator_self_inv, FractionalIdeal.le_inv_comm, IsArtinianRing.isUnit_iff_mem_nonZeroDivisors, PNat.equivNonZeroDivisorsNat_symm_apply_coe, IsFractionRing.isUnit_map_of_injective, FractionalIdeal.isNoetherian_spanSingleton_inv_to_map_mul, Algebra.IsAlgebraic.instIsLocalizedModuleNonZeroDivisorsToLinearMapToAlgHom, RatFunc.ofFractionRing_comp_algebraMap, map_equiv_traceDual, FractionalIdeal.count_maximal_coprime, val_unitsNonZeroDivisorsEquiv_symm_apply_coe, NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_apply, IsDedekindDomain.HeightOneSpectrum.valuation_of_mk', FractionRing.instIsFractionRing, FractionalIdeal.extendedHomₐ_eq_zero_iff, IsDedekindDomainInv.mul_inv_eq_one, FractionalIdeal.num_le_mul_inv, Ideal.relNorm_algebraMap', RatFunc.smul_eq_C_smul, FractionalIdeal.extendedHomₐ_eq_one_iff, notMem_nonZeroDivisors_iff, FractionalIdeal.coe_inv_of_ne_zero, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, FractionalIdeal.isNoetherian_zero, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, FractionalIdeal.coeIdeal_injective, RatFunc.instIsScalarTowerOfIsDomainOfPolynomial, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, DivisibleHull.coeAddMonoidHom_apply, FractionalIdeal.map_eq_zero_iff, DivisibleHull.instIsOrderedCancelAddMonoid, FractionalIdeal.dual_mul_self, differentialIdeal_le_fractionalIdeal_iff, FractionalIdeal.mem_dual, RatFunc.one_def, RatFunc.div_smul, Submodule.annihilator_top_inter_nonZeroDivisors, IsFractionRing.inv_def, FractionalIdeal.absNorm_eq, Polynomial.Monic.mem_nonZeroDivisors, IsArtinianRing.isUnit_iff_nonZeroDivisor_of_isIntegral, RatFunc.inv_def, Ideal.relNorm_algebraMap, FractionalIdeal.dual_involutive, FractionalIdeal.spanSingleton_div_spanSingleton, WittVector.inv_pairβ‚‚, Polynomial.mem_nonZeroDivisors_iff, IsFractionRing.mk'_num_den, RatFunc.faithfulSMul, WittVector.exists_frobenius_solution_fractionRing, den_dvd_of_is_root, IsFractionRing.associated_num_den_inv, RatFunc.instIsScalarTowerPolynomial, mk_mem_nonZeroDivisors_associates, noZeroDivisors_iff_forall_mem_nonZeroDivisors, FractionalIdeal.dual_eq_mul_inv, Ideal.card_norm_le_eq_card_norm_le_add_one, IsGaloisGroup.toFractionRing, FractionalIdeal.dual_div_dual, Submonoid.LocalizationMap.map_nonZeroDivisors_le, FractionalIdeal.count_mul, FractionalIdeal.dual_zero, FractionalIdeal.absNorm_span_singleton, nonempty_oreSet_of_strongRankCondition, IsLocalization.nonZeroDivisors_le_comap, MulEquivClass.map_nonZeroDivisors, FractionalIdeal.mul_one_div_le_one, FractionalIdeal.count_pow, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_mul, WittVector.inv_pair₁, FractionalIdeal.coeIdeal_eq_one, DivisibleHull.qsmul_def, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt, mem_nonZeroDivisors_iff', one_mem_inv_coe_ideal, IsArtinianRing.isUnit_iff_nonZeroDivisor_of_isIntegral', RatFunc.zero_def, ClassGroup.mk_mk0, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, FractionalIdeal.isPrincipal_inv, FractionalIdeal.coe_ideal_mul_inv, ClassGroup.mk0_eq_mk0_iff_exists_fraction_ring, IsDedekindDomain.HeightOneSpectrum.intValuation_zero_lt, Ideal.finite_mulSupport_coe, FractionalIdeal.map_div, Ideal.absNorm_pos_of_nonZeroDivisors, ClassGroup.mk_eq_one_iff, NumberField.fractionalIdeal_rank, FractionalIdeal.map_inv, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, RatFunc.ofFractionRing_sub, toPrincipalIdeal_eq_iff, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal', AlgebraicIndependent.liftAlgHom_comp_reprField, DivisibleHull.qsmul_of_nonneg, RatFunc.ofFractionRing_neg, FractionalIdeal.dual_le_dual, DivisibleHull.coeOrderAddMonoidHom_apply, FractionalIdeal.exists_ne_zero_mem_isInteger, isUnit_iff_mem_nonZeroDivisors_of_finite, DivisibleHull.nsmul_mk, ClassGroup.mk_eq_mk, FractionalIdeal.mul_left_le_iff, FractionalIdeal.count_zpow_self, Algebra.IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors, powers_le_nonZeroDivisors_of_noZeroDivisors, ClassGroup.equivPic_symm_apply, RatFunc.instIsScalarTowerOfPolynomial, IsFractionRing.num_mul_den_eq_num_mul_den_iff_eq, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, FractionalIdeal.count_neg_zpow, FractionalIdeal.divMod_zero_right, mul_cancel_right_coe_nonZeroDivisors, FractionalIdeal.isNoetherian_iff, IsFractionRing.mk'_eq_zero_iff_eq_zero, WittVector.StandardOneDimIsocrystal.frobenius_apply, WeierstrassCurve.Affine.Point.toClass_some, instFiniteFractionRingLocalizationAlgebraMapSubmonoidNonZeroDivisors, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, NumberField.exists_ideal_in_class_of_norm_le, FractionalIdeal.mul_inv_cancel_iff, FractionalIdeal.coe_ideal_span_singleton_inv_mul, IsLocalization.instIsScalarTowerAtPrimeFractionRing, FractionalIdeal.mul_inf, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt', FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal, nonZeroDivisors.associated_coe, FractionalIdeal.coe_inv_of_nonzero, FractionalIdeal.absNorm_nonneg, IsArtinianRing.isUnit_iff_mem_nonZeroDivisors_of_mulOpposite, PNat.equivNonZeroDivisorsNat_apply_coe, FractionalIdeal.spanFinset_coe, FractionalIdeal.count_zero, FractionalIdeal.div_spanSingleton, IsArtinianRing.isUnit_submonoid_eq, instIsSeparableFractionRingAtPrimeLocalizationAlgebraMapSubmonoidPrimeCompl, FractionalIdeal.count_one, DivisibleHull.mk_add_mk, IsDedekindDomainInv.inv_mul_eq_one, NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_symm_apply, NumberField.mem_span_basisOfFractionalIdeal, FractionalIdeal.one_le_extendedHomₐ_iff, isRegular_iff_mem_nonZeroDivisors, DivisibleHull.archimedeanClassOrderIso_apply, nonZeroDivisorsRight_eq_nonZeroDivisors, IsUnit.mem_nonZeroDivisors, Polynomial.X_mem_nonzeroDivisors, AlgebraicIndependent.aevalEquivField_apply_coe, FractionalIdeal.dual_inv, biUnion_associatedPrimes_eq_compl_nonZeroDivisors, FractionalIdeal.div_zero, FractionalIdeal.mul_right_le_iff, le_nonZeroDivisors_of_noZeroDivisors, FractionalIdeal.coeIdeal_eq_zero, IsFractionRing.charP, Algebra.IsAlgebraic.rank_fractionRing, instIsPushoutFractionRingPolynomial, FractionalIdeal.bot_lt_mul_inv, FractionalIdeal.not_inv_le_one_of_ne_bot, RatFunc.ofFractionRing_inv, IsFractionRing.num_mul_den_eq_num_iff_eq, FractionalIdeal.dual_eq_zero_iff, mem_nonZeroDivisors_of_ne_zero, FractionalIdeal.mul_inv_cancel_iff_isUnit, ClassGroup.exists_mk0_eq_mk0, DivisibleHull.zsmul_mk, FractionalIdeal.instPosMulStrictMonoNonZeroDivisors, nonZeroDivisorsEquivUnits_apply, Ideal.nonempty_inter_nonZeroDivisors_of_faithfulSMul, ClassGroup.mk0_surjective, RatFunc.neg_def, FractionalIdeal.inv_zero', OreLocalization.mul_inv_cancel, mem_nonZeroDivisors_iff_ne_zero, RatFunc.ofFractionRing_eq, DivisibleHull.neg_mk, FractionalIdeal.eq_zero_or_one, RatFunc.mk_zero, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, FractionalIdeal.exists_eq_spanSingleton_mul, FractionalIdeal.count_zpow, FractionalIdeal.abs_det_basis_change, DivisibleHull.qsmul_of_nonpos, nonZeroDivisorsEquivUnits_symm_apply_coe, Ideal.primeCompl_le_nonZeroDivisors, ClassGroup.exists_min, FractionalIdeal.count_pow_self, NumberField.mixedEmbedding.fundamentalCone.preimage_of_IdealSetMap, DivisibleHull.archimedeanClassOrderIso_symm_apply, QuadraticAlgebra.coe_mem_nonZeroDivisors_iff, FractionalIdeal.map_canonicalEquiv_mk0, FractionalIdeal.count_inv, IsRegular.mem_nonZeroDivisors, mul_cancel_left_coe_nonZeroDivisors, RatFunc.mk_one', Ideal.finprod_heightOneSpectrum_factorization_coe, IsArtinianRing.isUnit_submonoid_eq_of_isIntegral, FractionalIdeal.invertible_iff_generator_nonzero, FractionalIdeal.isNoetherian, toPrincipalIdeal_def, FractionalIdeal.count_mul', DivisibleHull.instIsStrictOrderedModuleRat, FractionalIdeal.dual_inv_le, NumberField.basisOfFractionalIdeal_apply, RatFunc.liftOn_def, DivisibleHull.coe_add, RatFunc.isScalarTower_liftAlgebra, FractionalIdeal.spanSingleton_div_self, FractionRing.isScalarTower_liftAlgebra, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, FractionalIdeal.isPrincipal, Ideal.exist_integer_multiples_notMem, NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, RatFunc.sub_def, RatFunc.div_def, MvPowerSeries.X_mem_nonzeroDivisors, FractionalIdeal.coe_ideal_span_singleton_mul_inv, ClassGroup.equiv_mk0, RatFunc.add_def, DivisibleHull.mk_zero, dvd_cancel_left_coe_nonZeroDivisors, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, DivisibleHull.zero_qsmul, IsArtinianRing.isUnitSubmonoid_eq, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, Algebra.algebraMap_intTrace_fractionRing, NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_surjective, FractionalIdeal.count_self, NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_apply, IsFractionRing.num_den_reduced, QuadraticAlgebra.algebraMap_mem_nonZeroDivisors_iff, FractionalIdeal.inv_le_comm, IsFractionRing.associated_den_num_inv, FractionalIdeal.dual_injective, ClassGroup.mk0_eq_mk0_inv_iff, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_map_one, IsFractionRing.self_iff_nonZeroDivisors_le_isUnit, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_coe, comap_nonZeroDivisors_le_of_injective, RatFunc.toFractionRingRingEquiv_symm_eq, FractionalIdeal.self_mul_dual, MvRatFunc.rank_eq_max_lift, FractionalIdeal.coe_div, ClassGroup.mk_canonicalEquiv, OreLocalization.inv_zero, NumberField.instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype, ClassGroup.equivPic_apply, WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq, RatFunc.toFractionRingRingEquiv_apply, FractionalIdeal.coeIdeal_absNorm, FractionalIdeal.count_maximal, Ideal.absNorm_algebraMap, instIsFractionRingLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, IsDedekindDomain.HeightOneSpectrum.adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers, FractionRing.instFaithfulSMul, QuadraticAlgebra.norm_mem_nonZeroDivisors_iff, FractionalIdeal.finprod_heightOneSpectrum_factorization_principal_fraction, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, IsFractionRing.num_mul_den_eq_num_iff_eq', FractionalIdeal.absNorm_eq_zero_iff, IsFractionRing.self_iff_nonZeroDivisors_eq_isUnit, zero_notMem_nonZeroDivisors, RatFunc.mul_def, ClassGroup.integralRep_mem_nonZeroDivisors, FractionalIdeal.num_eq_zero_iff, notMem_nonZeroDivisors_iff_right, mul_mem_nonZeroDivisors, FractionalIdeal.den_mem_inv, instFiniteDimensionalFractionRingOfFinite, Ideal.finite_mulSupport_inv, RatFunc.toFractionRingAlgEquiv_apply, RatFunc.laurentAux_ofFractionRing_mk, Algebra.IsAlgebraic.rank_fractionRing_polynomial, FractionalIdeal.coe_mk0, ClassGroup.mk_def, FractionRing.mk_eq_div, WeierstrassCurve.Affine.Point.toClass_apply, IsFractionRing.isUnit_den_zero, isDedekindDomainInv_iff, FractionalIdeal.zero_divMod, FractionalIdeal.mul_right_strictMono, FractionalIdeal.mem_div_iff_of_ne_zero, DivisibleHull.nnqsmul_mk, FractionalIdeal.count_coe, IsFractionRing.lift_mk', FractionalIdeal.coe_ideal_le_self_mul_inv, FractionalIdeal.instPosMulReflectLENonZeroDivisors, ClassGroup.equiv_mk, FractionalIdeal.extendedHomₐ_le_one_iff, IsIntegralClosure.isLocalization_of_isSeparable, FractionalIdeal.finprod_heightOneSpectrum_factorization', FractionalIdeal.mem_inv_iff, instIsPushoutFractionRingMvPolynomial_1, IsFractionRing.isUnit_den_iff, FractionalIdeal.spanSingleton_inv, RatFunc.ofFractionRing_algebraMap, FractionalIdeal.inv_of_ne_zero, FractionalIdeal.mul_div_self_cancel_iff, FractionalIdeal.exists_notMem_one_of_ne_bot, IsFractionRing.charZero, NumberField.mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply, FractionalIdeal.coeIdeal_le_coeIdeal, IsDedekindDomain.HeightOneSpectrum.adicAbv_of_mk', instIsPushoutFractionRingMvPolynomial, RatFunc.ofFractionRing_mul, IsLocalization.map_nonZeroDivisors_le, OreLocalization.inv_def, FractionalIdeal.absNorm_one, RatFunc.toFractionRing_eq
nonZeroDivisorsEquivUnits πŸ“–CompOp
2 mathmath: nonZeroDivisorsEquivUnits_apply, nonZeroDivisorsEquivUnits_symm_apply_coe
nonZeroDivisorsLeft πŸ“–CompOp
14 mathmath: nonZeroDivisorsLeft_eq_nonZeroSMulDivisors, MvPowerSeries.monomial_mem_nonzeroDivisorsLeft, nonZeroDivisorsLeft_eq_right, nonZeroDivisorsLeft_eq_nonZeroDivisors, IsArtinianRing.nonZeroDivisorsLeft_eq_isUnitSubmonoid, IsLeftRegular.mem_nonZeroDivisorsLeft, le_nonZeroDivisorsLeft_iff_isLeftRegular, mem_nonZeroDivisors_iff', isLeftRegular_iff_mem_nonZeroDivisorsLeft, coe_nonZeroDivisorsLeft_eq, mem_nonZeroDivisorsLeft_iff, noZeroDivisors_iff_forall_mem_nonZeroDivisorsLeft, zero_notMem_nonZeroDivisorsLeft, notMem_nonZeroDivisorsLeft_iff
nonZeroDivisorsRight πŸ“–CompOp
14 mathmath: isRightRegular_iff_mem_nonZeroDivisorsRight, nonZeroDivisorsLeft_eq_right, MvPowerSeries.monomial_mem_nonzeroDivisorsRight, coe_nonZeroDivisorsRight_eq, LinearMap.ker_toSpanSingleton_eq_bot_iff, noZeroDivisors_iff_forall_mem_nonZeroDivisorsRight, IsRightRegular.mem_nonZeroDivisorsRight, mem_nonZeroDivisors_iff', nonZeroDivisorsRight_eq_nonZeroDivisors, zero_notMem_nonZeroDivisorsRight, le_nonZeroDivisorsRight_iff_isRightRegular, notMem_nonZeroDivisorsRight_iff, IsArtinianRing.isUnitSubmonoid_eq_nonZeroDivisorsRight, mem_nonZeroDivisorsRight_iff
nonZeroSMulDivisors πŸ“–CompOp
4 mathmath: nonZeroDivisorsLeft_eq_nonZeroSMulDivisors, isSMulRegular_iff_mem_nonZeroSMulDivisors, mem_nonZeroSMulDivisors_iff, IsSMulRegular.mem_nonZeroSMulDivisors
unitsNonZeroDivisorsEquiv πŸ“–CompOp
3 mathmath: unitsNonZeroDivisorsEquiv_apply, val_inv_unitsNonZeroDivisorsEquiv_symm_apply_coe, val_unitsNonZeroDivisorsEquiv_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
associatesNonZeroDivisorsEquiv_mk_mk πŸ“–mathematicalAssociates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Associates.instCommMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Associated.setoid
DFunLike.coe
MulEquiv
Submonoid.toMonoid
Submonoid.mul
Associates.instMul
Submonoid.toCommMonoid
CommMonoidWithZero.toCommMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
associatesNonZeroDivisorsEquiv
mk_mem_nonZeroDivisors_associates
β€”β€”
associatesNonZeroDivisorsEquiv_symm_mk_mk πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
DFunLike.coe
MulEquiv
Associates
Submonoid.toMonoid
MonoidWithZero.toMonoid
Associates.instCommMonoidWithZero
Associates.instMul
Submonoid.toCommMonoid
CommMonoidWithZero.toCommMonoid
Submonoid.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
associatesNonZeroDivisorsEquiv
Associated.setoid
mk_mem_nonZeroDivisors_associates
β€”β€”
coe_nonZeroDivisorsLeft_eq πŸ“–mathematicalβ€”SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Submonoid.instSetLike
nonZeroDivisorsLeft
setOf
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”Set.ext
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_forall_eq
one_ne_zero
NeZero.one
coe_nonZeroDivisorsRight_eq πŸ“–mathematicalβ€”SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Submonoid.instSetLike
nonZeroDivisorsRight
setOf
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”Set.ext
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_forall_eq
one_ne_zero
NeZero.one
comap_nonZeroDivisors_le_of_injective πŸ“–mathematicalDFunLike.coeSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Submonoid.comap
MonoidWithZeroHomClass.toMonoidHomClass
nonZeroDivisors
β€”MonoidWithZeroHomClass.toMonoidHomClass
mem_nonZeroDivisors_of_injective
Submonoid.mem_comap
eq_zero_of_ne_zero_of_mul_left_eq_zero πŸ“–β€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulZeroClass.toZero
β€”β€”NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
eq_zero_of_ne_zero_of_mul_right_eq_zero πŸ“–β€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulZeroClass.toZero
β€”β€”NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
isSMulRegular_iff_mem_nonZeroSMulDivisors πŸ“–mathematicalβ€”IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroSMulDivisors
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DistribMulAction.toMulAction
β€”isSMulRegular_iff_right_eq_zero_of_smul
isUnit_le_nonZeroDivisors πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
IsUnit.submonoid
nonZeroDivisors
β€”IsUnit.mem_nonZeroDivisors
isUnit_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsUnit
MonoidWithZero.toMonoid
β€”Units.isUnit
le_nonZeroDivisors_of_noZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
β€”mem_nonZeroDivisors_of_ne_zero
map_le_nonZeroDivisors_of_injective πŸ“–mathematicalDFunLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Submonoid.map
MonoidWithZeroHomClass.toMonoidHomClass
β€”subsingleton_or_nontrivial
MonoidWithZeroHomClass.toMonoidHomClass
Submonoid.map.congr_simp
Unique.instSubsingleton
Submonoid.map_bot
le_nonZeroDivisors_of_noZeroDivisors
zero_notMem_nonZeroDivisors
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
map_mem_nonZeroDivisors πŸ“–β€”DFunLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”β€”eq_zero_of_ne_zero_of_mul_left_eq_zero
map_ne_zero_of_mem_nonZeroDivisors
eq_zero_of_ne_zero_of_mul_right_eq_zero
map_ne_zero_of_mem_nonZeroDivisors πŸ“–β€”DFunLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”β€”one_ne_zero
NeZero.one
map_zero
one_mul
mem_nonZeroDivisorsLeft_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”β€”
mem_nonZeroDivisorsRight_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”β€”
mem_nonZeroDivisors_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”β€”
mem_nonZeroDivisors_iff' πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
nonZeroDivisorsLeft
nonZeroDivisorsRight
β€”β€”
mem_nonZeroDivisors_iff_ne_zero πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”nonZeroDivisors.ne_zero
mem_nonZeroDivisors_of_ne_zero
mem_nonZeroDivisors_iff_right πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”nonZeroDivisorsRight_eq_nonZeroDivisors
mem_nonZeroDivisors_of_injective πŸ“–β€”DFunLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
mem_nonZeroDivisors_of_ne_zero πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”eq_zero_of_ne_zero_of_mul_left_eq_zero
eq_zero_of_ne_zero_of_mul_right_eq_zero
mem_nonZeroSMulDivisors_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroSMulDivisors
β€”β€”
mk_mem_nonZeroDivisors_associates πŸ“–mathematicalβ€”Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Associates.instCommMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”mem_nonZeroDivisors_iff_right
Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_forall_eq
Associates.mk_eq_zero
Associates.mk_ne_zero
Associates.mk_zero
mul_left_coe_nonZeroDivisors_eq_zero_iff πŸ“–mathematicalβ€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toZero
β€”mul_left_mem_nonZeroDivisors_eq_zero_iff
Subtype.prop
mul_left_mem_nonZeroDivisorsLeft_eq_zero_iff πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”MulZeroClass.mul_zero
mul_left_mem_nonZeroDivisors_eq_zero_iff πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”mul_comm
mul_right_mem_nonZeroDivisors_eq_zero_iff
mul_mem_nonZeroDivisors πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
β€”nonZeroDivisorsRight_eq_nonZeroDivisors
mul_assoc
MulZeroClass.zero_mul
mul_comm
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
mul_mem_nonZeroDivisorsLeft_of_mem_nonZeroDivisorsLeft πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
β€”Submonoid.mul_mem
mul_mem_nonZeroDivisorsRight_of_mem_nonZeroDivisorsRight πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
β€”Submonoid.mul_mem
mul_mem_nonZeroDivisors_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
β€”mem_nonZeroDivisors_iff'
Submonoid.mul_mem
mul_right_coe_nonZeroDivisors_eq_zero_iff πŸ“–mathematicalβ€”MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toZero
β€”mul_right_mem_nonZeroDivisors_eq_zero_iff
Subtype.prop
mul_right_mem_nonZeroDivisorsRight_eq_zero_iff πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”MulZeroClass.zero_mul
mul_right_mem_nonZeroDivisors_eq_zero_iff πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”mul_right_mem_nonZeroDivisorsRight_eq_zero_iff
noZeroDivisors_iff_forall_mem_nonZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulZeroClass.toZero
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”noZeroDivisors_iff_eq_zero_of_mul
noZeroDivisors_iff_forall_mem_nonZeroDivisorsLeft πŸ“–mathematicalβ€”NoZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulZeroClass.toZero
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
β€”noZeroDivisors_iff_right_eq_zero_of_mul
noZeroDivisors_iff_forall_mem_nonZeroDivisorsRight πŸ“–mathematicalβ€”NoZeroDivisors
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulZeroClass.toZero
Submonoid
MulZeroOneClass.toMulOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
β€”noZeroDivisors_iff_left_eq_zero_of_mul
nonZeroDivisorsEquivUnits_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Units
MonoidWithZero.toMonoid
Submonoid.mul
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
nonZeroDivisorsEquivUnits
β€”β€”
nonZeroDivisorsEquivUnits_symm_apply_coe πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
DFunLike.coe
MulEquiv
Units
MonoidWithZero.toMonoid
Units.instMul
Submonoid.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
nonZeroDivisorsEquivUnits
Units.val
β€”β€”
nonZeroDivisorsLeft_eq_nonZeroDivisors πŸ“–mathematicalβ€”nonZeroDivisorsLeft
CommMonoidWithZero.toMonoidWithZero
nonZeroDivisors
β€”nonZeroDivisors.eq_1
nonZeroDivisorsLeft_eq_right
inf_idem
nonZeroDivisorsLeft_eq_nonZeroSMulDivisors πŸ“–mathematicalβ€”nonZeroDivisorsLeft
nonZeroSMulDivisors
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulActionWithZero.toMulAction
MonoidWithZero.toMulActionWithZero
β€”β€”
nonZeroDivisorsLeft_eq_right πŸ“–mathematicalβ€”nonZeroDivisorsLeft
CommMonoidWithZero.toMonoidWithZero
nonZeroDivisorsRight
β€”Submonoid.ext
mul_comm
nonZeroDivisorsRight_eq_nonZeroDivisors πŸ“–mathematicalβ€”nonZeroDivisorsRight
CommMonoidWithZero.toMonoidWithZero
nonZeroDivisors
β€”nonZeroDivisorsLeft_eq_right
nonZeroDivisorsLeft_eq_nonZeroDivisors
nonZeroDivisors_dvd_iff_dvd_coe πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
semigroupDvd
MulMemClass.toSemigroup
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
β€”SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
mul_mem_nonZeroDivisors
Subtype.prop
nonZeroDivisors_le_comap_nonZeroDivisors_of_injective πŸ“–mathematicalDFunLike.coeSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Submonoid.comap
MonoidWithZeroHomClass.toMonoidHomClass
β€”Submonoid.le_comap_of_map_le
MonoidWithZeroHomClass.toMonoidHomClass
map_le_nonZeroDivisors_of_injective
le_rfl
notMem_nonZeroDivisorsLeft_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
Set.Nonempty
setOf
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”Set.nonempty_def
notMem_nonZeroDivisorsRight_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
Set.Nonempty
setOf
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”Set.nonempty_def
notMem_nonZeroDivisors_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Set.Nonempty
setOf
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”β€”
notMem_nonZeroDivisors_iff_right πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Set.Nonempty
setOf
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MulZeroClass.toZero
β€”β€”
powers_le_nonZeroDivisors_of_noZeroDivisors πŸ“–mathematicalβ€”Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Submonoid.powers
nonZeroDivisors
β€”le_nonZeroDivisors_of_noZeroDivisors
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
prod_mem_nonZeroDivisors_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Finset.prod
CommMonoidWithZero.toCommMonoid
β€”Finset.prod_induction
mul_mem_nonZeroDivisors
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
unitsNonZeroDivisorsEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Units
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Submonoid.toMonoid
MonoidWithZero.toMonoid
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsNonZeroDivisorsEquiv
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.toOneHom
Units.map
Submonoid.subtype
β€”β€”
val_inv_unitsNonZeroDivisorsEquiv_symm_apply_coe πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Units.val
Submonoid.toMonoid
MonoidWithZero.toMonoid
Units
Units.instInv
DFunLike.coe
MulEquiv
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
unitsNonZeroDivisorsEquiv
β€”β€”
val_unitsNonZeroDivisorsEquiv_symm_apply_coe πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Units.val
Submonoid.toMonoid
MonoidWithZero.toMonoid
DFunLike.coe
MulEquiv
Units
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
unitsNonZeroDivisorsEquiv
β€”β€”
zero_notMem_nonZeroDivisors πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”zero_notMem_nonZeroDivisorsLeft
zero_notMem_nonZeroDivisorsLeft πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”one_ne_zero
NeZero.one
MulZeroClass.zero_mul
zero_notMem_nonZeroDivisorsRight πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”one_ne_zero
NeZero.one
MulZeroClass.mul_zero

nonZeroDivisors

Definitions

NameCategoryTheorems
Β«term_⁰» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
associated_coe πŸ“–mathematicalβ€”Associated
MonoidWithZero.toMonoid
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Submonoid.toMonoid
β€”Equiv.exists_congr_left
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
coe_ne_zero πŸ“–β€”β€”β€”β€”ne_zero
ne_zero πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”β€”zero_notMem_nonZeroDivisors

nonZeroSMulDivisors

Definitions

NameCategoryTheorems
Β«term_⁰[_]Β» πŸ“–CompOpβ€”

---

← Back to Index