nonZeroDivisors π | CompOp | 460 mathmath: nonZeroDivisors_le_comap_nonZeroDivisors_of_injective, FractionalIdeal.spanSingleton_inv_mul, DivisibleHull.archimedeanClassMk_mk_eq, RatFunc.mk_def_of_ne, RatFunc.ofFractionRing_mk', FractionalIdeal.spanSingleton_mul_inv, RatFunc.mk_coe_def, Ideal.finite_setOf_absNorm_leβ, NumberField.mixedEmbedding.fundamentalCone.preimageOfMemIntegerSet_mixedEmbedding, ClassGroup.mk0_integralRep, ClassGroup.mk0_eq_mk0_iff, FractionalIdeal.isPrincipal_of_isPrincipal_num, NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, IsFractionRing.nonZeroDivisors_eq_isUnit, FractionalIdeal.map_one_div, NumberField.hermiteTheorem.minkowskiBound_lt_boundOfDiscBdd, FractionRing.instIsScalarTower, ClassGroup.Quot_mk_eq_mk, FractionalIdeal.le_dual_iff, IsDedekindRing.toIsIntegralClosure, Ring.ordFrac_eq_div, FractionalIdeal.sup_mul_inf, FractionalIdeal.instNontrivialNonZeroDivisors, NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, unitsNonZeroDivisorsEquiv_apply, WittVector.IsocrystalHom.frob_equivariant, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, NumberField.mixedEmbedding.mem_idealLattice, FractionalIdeal.isFractional_div_of_ne_zero, RatFunc.mk_smul, FractionalIdeal.invertible_of_principal, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_apply, IsIntegralClosure.isLocalization, FractionalIdeal.coe_extendedHomβ_eq_span, mem_principal_ideals_iff, instIsScalarTowerAtPrimeFractionRing_1, instIsFractionRingAtPrimeFractionRing, FractionalIdeal.divMod_zero_left, FractionalIdeal.count_finsuppProd, IsFractionRing.mk'_eq_one_iff_eq, Rat.isFractionRingDen, MvPowerSeries.monomial_mem_nonzeroDivisors, OreLocalization.nontrivial, DivisibleHull.mk_add_mk_left, FractionalIdeal.div_one, Ideal.absNorm_pos_iff_mem_nonZeroDivisors, FractionalIdeal.spanFinset_eq_zero, IsFractionRing.mk'_eq_div, FractionalIdeal.inv_le_inv_iff, Submodule.mem_torsion_iff, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, RatFunc.liftOn_ofFractionRing_mk, FractionalIdeal.instMulPosStrictMonoNonZeroDivisors, FractionalIdeal.extendedHomβ_coeIdeal_eq_map, FractionalIdeal.le_div_iff_mul_le, mem_nonZeroDivisors_iff, FractionalIdeal.inf_mul, FractionalIdeal.coeIdeal_inj, instIsSeparableFractionRingLocalizationAlgebraMapSubmonoidPrimeCompl, FractionalIdeal.isNoetherian_coeIdeal, instIsScalarTowerAtPrimeLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, num_isRoot_scaleRoots_of_aeval_eq_zero, IsFractionRing.exists_reduced_fraction, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, FractionalIdeal.isUnit_num, FractionalIdeal.count_coe_nonneg, FractionalIdeal.eq_zero_or_one_of_isField, isUnit_le_nonZeroDivisors, FractionalIdeal.inv_nonzero, FractionRing.algebraMap_liftAlgebra, FractionalIdeal.le_div_iff_of_ne_zero, FractionalIdeal.instMulPosReflectLENonZeroDivisors, NumberField.mixedEmbedding.fundamentalCone.integerSetQuotEquivAssociates_apply, FractionalIdeal.le_div_iff_of_nonzero, FractionalIdeal.div_of_ne_zero, instIsPushoutFractionRingPolynomial_1, FractionalIdeal.inv_eq, FractionalIdeal.mem_div_iff_of_nonzero, Ideal.absNorm_ne_zero_iff_mem_nonZeroDivisors, Rat.associated_num_den, RatFunc.mk_eq_localization_mk, coeSubmodule_differentIdeal_fractionRing, FractionalIdeal.dual_eq_dual_mul_dual, RatFunc.mk_eq_mk', NumberField.mixedEmbedding.fundamentalCone.integerSetEquiv_apply_fst, RatFunc.mk_def, FractionalIdeal.count_finprod_coprime, RatFunc.mk_eq_div', RatFunc.ofFractionRing_div, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Algebra.algebraMap_intNorm_fractionRing, FractionalIdeal.one_div_spanSingleton, FractionalIdeal.one_le_dual_one, IsFractionRing.integerNormalization_eq_zero_iff, FractionRing.instIsScalarTower_1, FractionalIdeal.fractional_div_of_nonzero, nonZeroDivisors_dvd_iff_dvd_coe, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, le_nonZeroDivisors_iff_isRegular, FractionalIdeal.mul_inv_cancel, coe_toPrincipalIdeal, IsFractionRing.instAtPrimeFractionRing, FractionalIdeal.count_prod, RatFunc.ofFractionRing_one, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_neg_mul, nonZeroDivisorsLeft_eq_nonZeroDivisors, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, IsDedekindDomain.HeightOneSpectrum.valuation_def, val_inv_unitsNonZeroDivisorsEquiv_symm_apply_coe, FractionalIdeal.count_finprod, FractionalIdeal.count_ne_zero, NumberField.det_basisOfFractionalIdeal_eq_absNorm, FractionalIdeal.absNorm_bot, mem_nonZeroDivisors_iff_right, FractionalIdeal.mul_left_strictMono, RatFunc.smul_eq_C_mul, FractionalIdeal.extendedHomβ_injective, NumberField.RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors, Ideal.disjoint_nonZeroDivisors_of_mem_minimalPrimes, Submonoid.LocalizationMap.nonZeroDivisors_le_comap, NumberField.mixedEmbedding.span_idealLatticeBasis, RatFunc.ofFractionRing_zero, FractionalIdeal.coe_dual, differentialIdeal_le_iff, AlgebraicIndependent.lift_reprField, RatFunc.ofFractionRing_add, WittVector.IsocrystalEquiv.frob_equivariant, FractionalIdeal.div_nonzero, FractionalIdeal.canonicalEquiv_mk0, QuadraticAlgebra.star_mem_nonZeroDivisors_iff, FractionalIdeal.coe_dual_one, DivisibleHull.instIsStrictOrderedModuleNNRat, IsArtinianRing.isUnitSubmonoid_eq_of_mulOpposite, Polynomial.notMem_nonZeroDivisors_iff, IsFractionRing.mk'_num_den', PrincipalIdeals.normal, coeIdeal_differentIdeal, IsFractionRing.div_surjective, instIsScalarTowerAtPrimeFractionRing, FractionalIdeal.inv_le_dual, mul_left_coe_nonZeroDivisors_eq_zero_iff, NumberField.mixedEmbedding.covolume_idealLattice, FractionalIdeal.div_eq_mul_inv, FractionalIdeal.coe_ideal_span_singleton_div_self, dvd_cancel_right_coe_nonZeroDivisors, mul_right_coe_nonZeroDivisors_eq_zero_iff, Ideal.span_singleton_nonZeroDivisors, FractionalIdeal.mul_generator_self_inv, FractionalIdeal.le_inv_comm, IsArtinianRing.isUnit_iff_mem_nonZeroDivisors, PNat.equivNonZeroDivisorsNat_symm_apply_coe, IsFractionRing.isUnit_map_of_injective, FractionalIdeal.isNoetherian_spanSingleton_inv_to_map_mul, Algebra.IsAlgebraic.instIsLocalizedModuleNonZeroDivisorsToLinearMapToAlgHom, RatFunc.ofFractionRing_comp_algebraMap, map_equiv_traceDual, FractionalIdeal.count_maximal_coprime, val_unitsNonZeroDivisorsEquiv_symm_apply_coe, NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_apply, IsDedekindDomain.HeightOneSpectrum.valuation_of_mk', FractionRing.instIsFractionRing, FractionalIdeal.extendedHomβ_eq_zero_iff, IsDedekindDomainInv.mul_inv_eq_one, FractionalIdeal.num_le_mul_inv, Ideal.relNorm_algebraMap', RatFunc.smul_eq_C_smul, FractionalIdeal.extendedHomβ_eq_one_iff, notMem_nonZeroDivisors_iff, FractionalIdeal.coe_inv_of_ne_zero, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, FractionalIdeal.isNoetherian_zero, NumberField.Ideal.tendsto_norm_le_div_atTopβ, FractionalIdeal.coeIdeal_injective, RatFunc.instIsScalarTowerOfIsDomainOfPolynomial, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, DivisibleHull.coeAddMonoidHom_apply, FractionalIdeal.map_eq_zero_iff, DivisibleHull.instIsOrderedCancelAddMonoid, FractionalIdeal.dual_mul_self, differentialIdeal_le_fractionalIdeal_iff, FractionalIdeal.mem_dual, RatFunc.one_def, RatFunc.div_smul, Submodule.annihilator_top_inter_nonZeroDivisors, IsFractionRing.inv_def, FractionalIdeal.absNorm_eq, Polynomial.Monic.mem_nonZeroDivisors, IsArtinianRing.isUnit_iff_nonZeroDivisor_of_isIntegral, RatFunc.inv_def, Ideal.relNorm_algebraMap, FractionalIdeal.dual_involutive, FractionalIdeal.spanSingleton_div_spanSingleton, WittVector.inv_pairβ, Polynomial.mem_nonZeroDivisors_iff, IsFractionRing.mk'_num_den, RatFunc.faithfulSMul, WittVector.exists_frobenius_solution_fractionRing, den_dvd_of_is_root, IsFractionRing.associated_num_den_inv, RatFunc.instIsScalarTowerPolynomial, mk_mem_nonZeroDivisors_associates, noZeroDivisors_iff_forall_mem_nonZeroDivisors, FractionalIdeal.dual_eq_mul_inv, Ideal.card_norm_le_eq_card_norm_le_add_one, IsGaloisGroup.toFractionRing, FractionalIdeal.dual_div_dual, Submonoid.LocalizationMap.map_nonZeroDivisors_le, FractionalIdeal.count_mul, FractionalIdeal.dual_zero, FractionalIdeal.absNorm_span_singleton, nonempty_oreSet_of_strongRankCondition, IsLocalization.nonZeroDivisors_le_comap, MulEquivClass.map_nonZeroDivisors, FractionalIdeal.mul_one_div_le_one, FractionalIdeal.count_pow, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_mul, WittVector.inv_pairβ, FractionalIdeal.coeIdeal_eq_one, DivisibleHull.qsmul_def, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt, mem_nonZeroDivisors_iff', one_mem_inv_coe_ideal, IsArtinianRing.isUnit_iff_nonZeroDivisor_of_isIntegral', RatFunc.zero_def, ClassGroup.mk_mk0, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, FractionalIdeal.isPrincipal_inv, FractionalIdeal.coe_ideal_mul_inv, ClassGroup.mk0_eq_mk0_iff_exists_fraction_ring, IsDedekindDomain.HeightOneSpectrum.intValuation_zero_lt, Ideal.finite_mulSupport_coe, FractionalIdeal.map_div, Ideal.absNorm_pos_of_nonZeroDivisors, ClassGroup.mk_eq_one_iff, NumberField.fractionalIdeal_rank, FractionalIdeal.map_inv, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, RatFunc.ofFractionRing_sub, toPrincipalIdeal_eq_iff, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal', AlgebraicIndependent.liftAlgHom_comp_reprField, DivisibleHull.qsmul_of_nonneg, RatFunc.ofFractionRing_neg, FractionalIdeal.dual_le_dual, DivisibleHull.coeOrderAddMonoidHom_apply, FractionalIdeal.exists_ne_zero_mem_isInteger, isUnit_iff_mem_nonZeroDivisors_of_finite, DivisibleHull.nsmul_mk, ClassGroup.mk_eq_mk, FractionalIdeal.mul_left_le_iff, FractionalIdeal.count_zpow_self, Algebra.IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors, powers_le_nonZeroDivisors_of_noZeroDivisors, ClassGroup.equivPic_symm_apply, RatFunc.instIsScalarTowerOfPolynomial, IsFractionRing.num_mul_den_eq_num_mul_den_iff_eq, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, FractionalIdeal.count_neg_zpow, FractionalIdeal.divMod_zero_right, mul_cancel_right_coe_nonZeroDivisors, FractionalIdeal.isNoetherian_iff, IsFractionRing.mk'_eq_zero_iff_eq_zero, WittVector.StandardOneDimIsocrystal.frobenius_apply, WeierstrassCurve.Affine.Point.toClass_some, instFiniteFractionRingLocalizationAlgebraMapSubmonoidNonZeroDivisors, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, NumberField.exists_ideal_in_class_of_norm_le, FractionalIdeal.mul_inv_cancel_iff, FractionalIdeal.coe_ideal_span_singleton_inv_mul, IsLocalization.instIsScalarTowerAtPrimeFractionRing, FractionalIdeal.mul_inf, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt', FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal, nonZeroDivisors.associated_coe, FractionalIdeal.coe_inv_of_nonzero, FractionalIdeal.absNorm_nonneg, IsArtinianRing.isUnit_iff_mem_nonZeroDivisors_of_mulOpposite, PNat.equivNonZeroDivisorsNat_apply_coe, FractionalIdeal.spanFinset_coe, FractionalIdeal.count_zero, FractionalIdeal.div_spanSingleton, IsArtinianRing.isUnit_submonoid_eq, instIsSeparableFractionRingAtPrimeLocalizationAlgebraMapSubmonoidPrimeCompl, FractionalIdeal.count_one, DivisibleHull.mk_add_mk, IsDedekindDomainInv.inv_mul_eq_one, NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_symm_apply, NumberField.mem_span_basisOfFractionalIdeal, FractionalIdeal.one_le_extendedHomβ_iff, isRegular_iff_mem_nonZeroDivisors, DivisibleHull.archimedeanClassOrderIso_apply, nonZeroDivisorsRight_eq_nonZeroDivisors, IsUnit.mem_nonZeroDivisors, Polynomial.X_mem_nonzeroDivisors, AlgebraicIndependent.aevalEquivField_apply_coe, FractionalIdeal.dual_inv, biUnion_associatedPrimes_eq_compl_nonZeroDivisors, FractionalIdeal.div_zero, FractionalIdeal.mul_right_le_iff, le_nonZeroDivisors_of_noZeroDivisors, FractionalIdeal.coeIdeal_eq_zero, IsFractionRing.charP, Algebra.IsAlgebraic.rank_fractionRing, instIsPushoutFractionRingPolynomial, FractionalIdeal.bot_lt_mul_inv, FractionalIdeal.not_inv_le_one_of_ne_bot, RatFunc.ofFractionRing_inv, IsFractionRing.num_mul_den_eq_num_iff_eq, FractionalIdeal.dual_eq_zero_iff, mem_nonZeroDivisors_of_ne_zero, FractionalIdeal.mul_inv_cancel_iff_isUnit, ClassGroup.exists_mk0_eq_mk0, DivisibleHull.zsmul_mk, FractionalIdeal.instPosMulStrictMonoNonZeroDivisors, nonZeroDivisorsEquivUnits_apply, Ideal.nonempty_inter_nonZeroDivisors_of_faithfulSMul, ClassGroup.mk0_surjective, RatFunc.neg_def, FractionalIdeal.inv_zero', OreLocalization.mul_inv_cancel, mem_nonZeroDivisors_iff_ne_zero, RatFunc.ofFractionRing_eq, DivisibleHull.neg_mk, FractionalIdeal.eq_zero_or_one, RatFunc.mk_zero, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, FractionalIdeal.exists_eq_spanSingleton_mul, FractionalIdeal.count_zpow, FractionalIdeal.abs_det_basis_change, DivisibleHull.qsmul_of_nonpos, nonZeroDivisorsEquivUnits_symm_apply_coe, Ideal.primeCompl_le_nonZeroDivisors, ClassGroup.exists_min, FractionalIdeal.count_pow_self, NumberField.mixedEmbedding.fundamentalCone.preimage_of_IdealSetMap, DivisibleHull.archimedeanClassOrderIso_symm_apply, QuadraticAlgebra.coe_mem_nonZeroDivisors_iff, FractionalIdeal.map_canonicalEquiv_mk0, FractionalIdeal.count_inv, IsRegular.mem_nonZeroDivisors, mul_cancel_left_coe_nonZeroDivisors, RatFunc.mk_one', Ideal.finprod_heightOneSpectrum_factorization_coe, IsArtinianRing.isUnit_submonoid_eq_of_isIntegral, FractionalIdeal.invertible_iff_generator_nonzero, FractionalIdeal.isNoetherian, toPrincipalIdeal_def, FractionalIdeal.count_mul', DivisibleHull.instIsStrictOrderedModuleRat, FractionalIdeal.dual_inv_le, NumberField.basisOfFractionalIdeal_apply, RatFunc.liftOn_def, DivisibleHull.coe_add, RatFunc.isScalarTower_liftAlgebra, FractionalIdeal.spanSingleton_div_self, FractionRing.isScalarTower_liftAlgebra, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, FractionalIdeal.isPrincipal, Ideal.exist_integer_multiples_notMem, NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, RatFunc.sub_def, RatFunc.div_def, MvPowerSeries.X_mem_nonzeroDivisors, FractionalIdeal.coe_ideal_span_singleton_mul_inv, ClassGroup.equiv_mk0, RatFunc.add_def, DivisibleHull.mk_zero, dvd_cancel_left_coe_nonZeroDivisors, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, DivisibleHull.zero_qsmul, IsArtinianRing.isUnitSubmonoid_eq, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, Algebra.algebraMap_intTrace_fractionRing, NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_surjective, FractionalIdeal.count_self, NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_apply, IsFractionRing.num_den_reduced, QuadraticAlgebra.algebraMap_mem_nonZeroDivisors_iff, FractionalIdeal.inv_le_comm, IsFractionRing.associated_den_num_inv, FractionalIdeal.dual_injective, ClassGroup.mk0_eq_mk0_inv_iff, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_map_one, IsFractionRing.self_iff_nonZeroDivisors_le_isUnit, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_coe, comap_nonZeroDivisors_le_of_injective, RatFunc.toFractionRingRingEquiv_symm_eq, FractionalIdeal.self_mul_dual, MvRatFunc.rank_eq_max_lift, FractionalIdeal.coe_div, ClassGroup.mk_canonicalEquiv, OreLocalization.inv_zero, NumberField.instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype, ClassGroup.equivPic_apply, WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq, RatFunc.toFractionRingRingEquiv_apply, FractionalIdeal.coeIdeal_absNorm, FractionalIdeal.count_maximal, Ideal.absNorm_algebraMap, instIsFractionRingLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, IsDedekindDomain.HeightOneSpectrum.adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers, FractionRing.instFaithfulSMul, QuadraticAlgebra.norm_mem_nonZeroDivisors_iff, FractionalIdeal.finprod_heightOneSpectrum_factorization_principal_fraction, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, IsFractionRing.num_mul_den_eq_num_iff_eq', FractionalIdeal.absNorm_eq_zero_iff, IsFractionRing.self_iff_nonZeroDivisors_eq_isUnit, zero_notMem_nonZeroDivisors, RatFunc.mul_def, ClassGroup.integralRep_mem_nonZeroDivisors, FractionalIdeal.num_eq_zero_iff, notMem_nonZeroDivisors_iff_right, mul_mem_nonZeroDivisors, FractionalIdeal.den_mem_inv, instFiniteDimensionalFractionRingOfFinite, Ideal.finite_mulSupport_inv, RatFunc.toFractionRingAlgEquiv_apply, RatFunc.laurentAux_ofFractionRing_mk, Algebra.IsAlgebraic.rank_fractionRing_polynomial, FractionalIdeal.coe_mk0, ClassGroup.mk_def, FractionRing.mk_eq_div, WeierstrassCurve.Affine.Point.toClass_apply, IsFractionRing.isUnit_den_zero, isDedekindDomainInv_iff, FractionalIdeal.zero_divMod, FractionalIdeal.mul_right_strictMono, FractionalIdeal.mem_div_iff_of_ne_zero, DivisibleHull.nnqsmul_mk, FractionalIdeal.count_coe, IsFractionRing.lift_mk', FractionalIdeal.coe_ideal_le_self_mul_inv, FractionalIdeal.instPosMulReflectLENonZeroDivisors, ClassGroup.equiv_mk, FractionalIdeal.extendedHomβ_le_one_iff, IsIntegralClosure.isLocalization_of_isSeparable, FractionalIdeal.finprod_heightOneSpectrum_factorization', FractionalIdeal.mem_inv_iff, instIsPushoutFractionRingMvPolynomial_1, IsFractionRing.isUnit_den_iff, FractionalIdeal.spanSingleton_inv, RatFunc.ofFractionRing_algebraMap, FractionalIdeal.inv_of_ne_zero, FractionalIdeal.mul_div_self_cancel_iff, FractionalIdeal.exists_notMem_one_of_ne_bot, IsFractionRing.charZero, NumberField.mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply, FractionalIdeal.coeIdeal_le_coeIdeal, IsDedekindDomain.HeightOneSpectrum.adicAbv_of_mk', instIsPushoutFractionRingMvPolynomial, RatFunc.ofFractionRing_mul, IsLocalization.map_nonZeroDivisors_le, OreLocalization.inv_def, FractionalIdeal.absNorm_one, RatFunc.toFractionRing_eq
|