Documentation Verification Report

Opposite

πŸ“ Source: Mathlib/Algebra/GroupWithZero/Opposite.lean

Statistics

MetricCount
DefinitionsinstGroupWithZero, instMonoidWithZero, instMulZeroClass, instMulZeroOneClass, instSemigroupWithZero, instGroupWithZero, instMonoidWithZero, instMulZeroClass, instMulZeroOneClass, instSemigroupWithZero
10
TheoremsinstNoZeroDivisors, instIsCancelMulZero, instIsLeftCancelMulZeroOfIsRightCancelMulZero, instIsRightCancelMulZeroOfIsLeftCancelMulZero, instNoZeroDivisors, isCancelMulZero_iff, isLeftCancelMulZero_iff, isRightCancelMulZero_iff
8
Total18

AddOpposite

Definitions

NameCategoryTheorems
instGroupWithZero πŸ“–CompOpβ€”
instMonoidWithZero πŸ“–CompOpβ€”
instMulZeroClass πŸ“–CompOpβ€”
instMulZeroOneClass πŸ“–CompOpβ€”
instSemigroupWithZero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
AddOpposite
instMul
instZero
β€”unop_injective
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
op_injective

MulOpposite

Definitions

NameCategoryTheorems
instGroupWithZero πŸ“–CompOpβ€”
instMonoidWithZero πŸ“–CompOp
1 mathmath: NormedAddGroupHom.isCentralScalar
instMulZeroClass πŸ“–CompOpβ€”
instMulZeroOneClass πŸ“–CompOpβ€”
instSemigroupWithZero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCancelMulZero πŸ“–mathematicalβ€”IsCancelMulZero
MulOpposite
instMul
instZero
β€”instIsLeftCancelMulZeroOfIsRightCancelMulZero
IsCancelMulZero.toIsRightCancelMulZero
instIsRightCancelMulZeroOfIsLeftCancelMulZero
IsCancelMulZero.toIsLeftCancelMulZero
instIsLeftCancelMulZeroOfIsRightCancelMulZero πŸ“–mathematicalβ€”IsLeftCancelMulZero
MulOpposite
instMul
instZero
β€”unop_injective
mul_right_cancelβ‚€
instIsRightCancelMulZeroOfIsLeftCancelMulZero πŸ“–mathematicalβ€”IsRightCancelMulZero
MulOpposite
instMul
instZero
β€”unop_injective
mul_left_cancelβ‚€
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
MulOpposite
instMul
instZero
β€”NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
op_injective
unop_injective
isCancelMulZero_iff πŸ“–mathematicalβ€”IsCancelMulZero
MulOpposite
instMul
instZero
β€”Function.Injective.isCancelMulZero
op_injective
instIsCancelMulZero
isLeftCancelMulZero_iff πŸ“–mathematicalβ€”IsLeftCancelMulZero
MulOpposite
instMul
instZero
IsRightCancelMulZero
β€”Function.Injective.isRightCancelMulZero
op_injective
instIsRightCancelMulZeroOfIsLeftCancelMulZero
instIsLeftCancelMulZeroOfIsRightCancelMulZero
isRightCancelMulZero_iff πŸ“–mathematicalβ€”IsRightCancelMulZero
MulOpposite
instMul
instZero
IsLeftCancelMulZero
β€”Function.Injective.isLeftCancelMulZero
op_injective
instIsLeftCancelMulZeroOfIsRightCancelMulZero
instIsRightCancelMulZeroOfIsLeftCancelMulZero

---

← Back to Index