Documentation Verification Report

Pi

📁 Source: Mathlib/Algebra/GroupWithZero/Pi.lean

Statistics

MetricCount
Definitionssingle, commMonoidWithZero, monoidWithZero, mulZeroClass, mulZeroOneClass, semigroupWithZero
6
Theoremssingle_apply, single_mul, single_mul_left, single_mul_left_apply, single_mul_right, single_mul_right_apply
6
Total12

MulHom

Definitions

NameCategoryTheorems
single 📖CompOp
1 mathmath: single_apply

Theorems

NameKindAssumesProvesValidatesDepends On
single_apply 📖mathematicalDFunLike.coe
MulHom
MulZeroClass.toMul
Pi.instMul
funLike
single
Pi.single
MulZeroClass.toZero

Pi

Definitions

NameCategoryTheorems
commMonoidWithZero 📖CompOp
monoidWithZero 📖CompOp
1 mathmath: Matrix.inv_diagonal
mulZeroClass 📖CompOp
mulZeroOneClass 📖CompOp
41 mathmath: NumberField.mixedEmbedding.norm_eq_sup'_normAtPlace, NumberField.mixedEmbedding.normAtAllPlaces_apply, NumberField.mixedEmbedding.norm_eq_zero_iff', NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isComplex, NumberField.mixedEmbedding.norm_unit_smul, NumberField.mixedEmbedding.norm_eq_norm, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, NumberField.mixedEmbedding.normAtPlace_apply_of_isReal, NumberField.mixedEmbedding.fundamentalCone.norm_pos_of_mem, NumberField.mixedEmbedding.convexBodySumFun_apply, NumberField.mixedEmbedding.fundamentalCone.mem_normLeOne, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, NumberField.mixedEmbedding.normAtPlace_add_le, NumberField.mixedEmbedding.norm_nonneg, NumberField.mixedEmbedding.norm_smul, NumberField.mixedEmbedding.continuous_norm, NumberField.mixedEmbedding.fundamentalCone.norm_normAtAllPlaces, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isReal, NumberField.mixedEmbedding.fundamentalCone.normAtPlace_pos_of_mem, NumberField.mixedEmbedding.normAtPlace_neg, NumberField.mixedEmbedding.continuous_normAtPlace, NumberField.mixedEmbedding.normAtPlace_apply, NumberField.mixedEmbedding.normAtPlace_apply_of_isComplex, NumberField.mixedEmbedding.forall_normAtPlace_eq_zero_iff, NumberField.mixedEmbedding.logMap_apply, NumberField.mixedEmbedding.fundamentalCone.intNorm_coe, NumberField.mixedEmbedding.norm_eq_zero_iff, NumberField.mixedEmbedding.normAtPlace_nonneg, NumberField.mixedEmbedding.normAtPlace_negAt, NumberField.mixedEmbedding.normAtPlace_smul, NumberField.mixedEmbedding.norm_real, NumberField.mixedEmbedding.norm_negAt, NumberField.mixedEmbedding.norm_unit, NumberField.mixedEmbedding.normAtPlace_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.nnnorm_eq_sup_normAtPlace, NumberField.mixedEmbedding.norm_apply, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, NumberField.mixedEmbedding.normAtPlace_real, NumberField.mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply
semigroupWithZero 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
single_mul 📖mathematicalsingle
MulZeroClass.toZero
MulZeroClass.toMul
instMul
MulHom.map_mul
single_mul_left 📖mathematicalsingle
MulZeroClass.toZero
MulZeroClass.toMul
instMul
single_mul_left_apply
single_mul_left_apply 📖mathematicalsingle
MulZeroClass.toZero
MulZeroClass.toMul
apply_single
MulZeroClass.zero_mul
single_mul_right 📖mathematicalsingle
MulZeroClass.toZero
MulZeroClass.toMul
instMul
single_mul_right_apply
single_mul_right_apply 📖mathematicalsingle
MulZeroClass.toZero
MulZeroClass.toMul
apply_single
MulZeroClass.mul_zero

---

← Back to Index