Regular
π Source: Mathlib/Algebra/GroupWithZero/Regular.lean
Statistics
IsLeftRegular
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mul_left_eq_zero_iff π | mathematical | IsLeftRegularMulZeroClass.toMul | MulZeroClass.toZero | β | MulZeroClass.mul_zero |
ne_zero π | β | IsLeftRegularMulZeroClass.toMul | β | β | exists_pair_neMulZeroClass.zero_mul |
subsingleton π | β | IsLeftRegularMulZeroClass.toMulMulZeroClass.toZero | β | β | MulZeroClass.zero_mul |
IsRegular
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
ne_zero π | β | IsRegularMulZeroClass.toMul | β | β | IsLeftRegular.ne_zeroleft |
of_ne_zero π | mathematical | β | IsRegularMulZeroClass.toMul | β | mul_left_cancelβIsCancelMulZero.toIsLeftCancelMulZeromul_right_cancelβIsCancelMulZero.toIsRightCancelMulZero |
subsingleton π | β | IsRegularMulZeroClass.toMulMulZeroClass.toZero | β | β | IsLeftRegular.subsingletonleft |
IsRightRegular
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mul_right_eq_zero_iff π | mathematical | IsRightRegularMulZeroClass.toMul | MulZeroClass.toZero | β | MulZeroClass.zero_mul |
ne_zero π | β | IsRightRegularMulZeroClass.toMul | β | β | exists_pair_neMulZeroClass.mul_zero |
subsingleton π | β | IsRightRegularMulZeroClass.toMulMulZeroClass.toZero | β | β | MulZeroClass.mul_zero |
(root)
Theorems
---