Documentation Verification Report

Regular

πŸ“ Source: Mathlib/Algebra/GroupWithZero/Regular.lean

Statistics

MetricCount
Definitions0
Theoremsmul_left_eq_zero_iff, ne_zero, subsingleton, ne_zero, of_ne_zero, subsingleton, mul_right_eq_zero_iff, ne_zero, subsingleton, isLeftRegular_zero_iff_subsingleton, isRegular_iff_ne_zero, isRegular_iff_subsingleton, isRegular_of_ne_zero, isRightRegular_zero_iff_subsingleton, not_isLeftRegular_zero, not_isLeftRegular_zero_iff, not_isRegular_zero, not_isRightRegular_zero, not_isRightRegular_zero_iff
19
Total19

IsLeftRegular

Theorems

NameKindAssumesProvesValidatesDepends On
mul_left_eq_zero_iff πŸ“–mathematicalIsLeftRegular
MulZeroClass.toMul
MulZeroClass.toZeroβ€”MulZeroClass.mul_zero
ne_zero πŸ“–β€”IsLeftRegular
MulZeroClass.toMul
β€”β€”exists_pair_ne
MulZeroClass.zero_mul
subsingleton πŸ“–β€”IsLeftRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”β€”MulZeroClass.zero_mul

IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
ne_zero πŸ“–β€”IsRegular
MulZeroClass.toMul
β€”β€”IsLeftRegular.ne_zero
left
of_ne_zero πŸ“–mathematicalβ€”IsRegular
MulZeroClass.toMul
β€”mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
subsingleton πŸ“–β€”IsRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”β€”IsLeftRegular.subsingleton
left

IsRightRegular

Theorems

NameKindAssumesProvesValidatesDepends On
mul_right_eq_zero_iff πŸ“–mathematicalIsRightRegular
MulZeroClass.toMul
MulZeroClass.toZeroβ€”MulZeroClass.zero_mul
ne_zero πŸ“–β€”IsRightRegular
MulZeroClass.toMul
β€”β€”exists_pair_ne
MulZeroClass.mul_zero
subsingleton πŸ“–β€”IsRightRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”β€”MulZeroClass.mul_zero

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isLeftRegular_zero_iff_subsingleton πŸ“–mathematicalβ€”IsLeftRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”IsLeftRegular.subsingleton
isRegular_iff_ne_zero πŸ“–mathematicalβ€”IsRegular
MulZeroClass.toMul
β€”IsRegular.ne_zero
IsRegular.of_ne_zero
isRegular_iff_subsingleton πŸ“–mathematicalβ€”IsRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”IsLeftRegular.subsingleton
IsRegular.left
isLeftRegular_zero_iff_subsingleton
isRightRegular_zero_iff_subsingleton
isRegular_of_ne_zero πŸ“–mathematicalβ€”IsRegular
MulZeroClass.toMul
β€”IsRegular.of_ne_zero
isRightRegular_zero_iff_subsingleton πŸ“–mathematicalβ€”IsRightRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”IsRightRegular.subsingleton
not_isLeftRegular_zero πŸ“–mathematicalβ€”IsLeftRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”not_isLeftRegular_zero_iff
not_isLeftRegular_zero_iff πŸ“–mathematicalβ€”IsLeftRegular
MulZeroClass.toMul
MulZeroClass.toZero
Nontrivial
β€”nontrivial_iff
not_iff_comm
isLeftRegular_zero_iff_subsingleton
subsingleton_iff
not_isRegular_zero πŸ“–mathematicalβ€”IsRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”IsRegular.ne_zero
not_isRightRegular_zero πŸ“–mathematicalβ€”IsRightRegular
MulZeroClass.toMul
MulZeroClass.toZero
β€”not_isRightRegular_zero_iff
not_isRightRegular_zero_iff πŸ“–mathematicalβ€”IsRightRegular
MulZeroClass.toMul
MulZeroClass.toZero
Nontrivial
β€”nontrivial_iff
not_iff_comm
isRightRegular_zero_iff_subsingleton
subsingleton_iff

---

← Back to Index