Documentation Verification Report

WithZero

πŸ“ Source: Mathlib/Algebra/GroupWithZero/WithZero.lean

Statistics

MetricCount
Definitionsunzero, withZero, coeMonoidHom, div, exp, expEquiv, expRecOn, instAddMonoidWithOne, instCommGroupWithZero, instCommMonoidWithZero, instCommSemigroup, instDivInvMonoid, instDivInvOneMonoid, instDivisionCommMonoid, instDivisionMonoid, instGroupWithZero, instInvolutiveInv, instMonoidWithZero, instMulZeroClass, instMulZeroOneClass, instPowInt, instSemigroupWithZero, inv, invOneClass, lift', logEquiv, map', one, pow, unitsWithZeroEquiv, withZeroUnitsEquiv, «term_ᡐ⁰»
32
Theoremsapply_one_apply_eq, comp_one, map_eq_zero_iff, one_apply_val_unit, withZero_apply_apply, withZero_apply_symm_apply, withZero_symm_apply_apply, withZero_symm_apply_symm_apply, coeMonoidHom_apply, coe_div, coe_expEquiv_apply, coe_inv, coe_mul, coe_one, coe_pow, coe_unitsWithZeroEquiv_eq_units_val, coe_zpow, expEquiv_symm, expRecOn_exp, expRecOn_zero, exp_add, exp_eq_one, exp_inj, exp_injective, exp_log, exp_ne_zero, exp_neg, exp_nsmul, exp_sub, exp_zero, exp_zsmul, instCanLiftMultiplicativeExpNeOfNat, instNoZeroDivisors, instNontrivialUnits, inv_zero, lift'_coe, lift'_surjective, lift'_symm_apply_apply, lift'_unique, lift'_zero, logEquiv_apply, logEquiv_symm, logEquiv_unitsMk0, log_div, log_exp, log_inv, log_mul, log_one, log_pow, log_zero, log_zpow, map'_coe, map'_comp, map'_id, map'_injective, map'_injective_iff, map'_map', map'_surjective, map'_surjective_iff, map'_zero, monoidWithZeroHom_ext, monoidWithZeroHom_ext_iff, recZeroCoe_one, unitsWithZeroEquiv_apply, unitsWithZeroEquiv_symm_apply, unzero_mul, withZeroUnitsEquiv_apply, withZeroUnitsEquiv_symm_apply, withZeroUnitsEquiv_symm_apply_coe
69
Total101

MonoidWithZeroHom

Theorems

NameKindAssumesProvesValidatesDepends On
apply_one_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
funLike
one
β€”eq_or_ne
one_apply_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
monoidWithZeroHomClass
one_apply_of_ne_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
comp_one πŸ“–mathematicalβ€”comp
MonoidWithZeroHom
one
β€”ext
apply_one_apply_eq
map_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
funLike
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”Mathlib.Tactic.Contrapose.contrapose₁
CanLift.prf
instCanLiftUnitsValIsUnit
isUnit_iff_ne_zero
one_ne_zero
NeZero.one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
monoidWithZeroHomClass
Units.mul_inv
map_mul
MonoidHomClass.toMulHomClass
MulZeroClass.zero_mul
map_zero
MonoidWithZeroHomClass.toZeroHomClass
one_apply_val_unit πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
funLike
one
Units.val
MonoidWithZero.toMonoid
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”one_apply_of_ne_zero
Units.ne_zero

MulEquiv

Definitions

NameCategoryTheorems
unzero πŸ“–CompOpβ€”
withZero πŸ“–CompOp
4 mathmath: withZero_apply_symm_apply, withZero_apply_apply, withZero_symm_apply_apply, withZero_symm_apply_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withZero_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
WithZero
MulZeroClass.toMul
WithZero.instMulZeroClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
instEquivLike
Equiv
Equiv.instEquivLike
withZero
MonoidWithZeroHom
WithZero.instMulZeroOneClass
MonoidWithZeroHom.funLike
WithZero.map'
MonoidHomClass.toMonoidHom
β€”β€”
withZero_apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
WithZero
MulZeroClass.toMul
WithZero.instMulZeroClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
instEquivLike
symm
Equiv
Equiv.instEquivLike
withZero
MonoidWithZeroHom
WithZero.instMulZeroOneClass
MonoidWithZeroHom.funLike
WithZero.map'
MonoidHomClass.toMonoidHom
β€”β€”
withZero_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
instEquivLike
Equiv
WithZero
MulZeroClass.toMul
WithZero.instMulZeroClass
Equiv.instEquivLike
Equiv.symm
withZero
WithZero.unzero
WithZero.coe
β€”β€”
withZero_symm_apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
instEquivLike
symm
Equiv
WithZero
MulZeroClass.toMul
WithZero.instMulZeroClass
Equiv.instEquivLike
Equiv.symm
withZero
WithZero.unzero
WithZero.coe
β€”β€”

WithZero

Definitions

NameCategoryTheorems
coeMonoidHom πŸ“–CompOp
3 mathmath: monoidWithZeroHom_ext_iff, lift'_unique, coeMonoidHom_apply
div πŸ“–CompOp
6 mathmath: Ring.ordFrac_eq_div, exp_sub, Polynomial.valuation_of_mk, coe_div, log_div, IsDedekindDomain.HeightOneSpectrum.valuation_of_mk'
exp πŸ“–CompOp
47 mathmath: exp_add, exp_inj, FunctionField.inftyValuation.X_inv, IsDedekindDomain.HeightOneSpectrum.intValuation_if_neg, LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, LaurentSeries.valuation_single_zpow, exp_lt_exp, exp_sub, IsDedekindDomain.HeightOneSpectrum.intValuationDef_if_neg, IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_mem, coe_expEquiv_apply, IsDedekindDomain.HeightOneSpectrum.intValuation_singleton, Rat.padicValuation_self, FunctionField.inftyValuation.polynomial, log_le_iff_le_exp, IsDedekindDomain.HeightOneSpectrum.valuation_exists_uniformizer, lt_mul_exp_iff_le, FunctionField.inftyValuation_of_nonzero, IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_dvd, Padic.mulValuation_toFun, exp_eq_one, exp_le_exp, le_exp_of_log_le, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, Int.padicValuation_self, expRecOn_exp, log_exp, le_log_iff_exp_le, exp_nsmul, lt_exp_of_log_lt, instCanLiftMultiplicativeExpNeOfNat, FunctionField.inftyValuation.X_zpow, lt_log_iff_exp_lt, IsDedekindDomain.HeightOneSpectrum.intValuation_def, FunctionField.inftyValuation.X, exp_pos, PowerSeries.intValuation_X, exp_zsmul, IsDedekindDomain.HeightOneSpectrum.intValuation_exists_uniformizer, log_lt_iff_lt_exp, le_exp_log, exp_log, exp_zero, LaurentSeries.valuation_X_pow, exp_neg, Polynomial.valuation_X_eq_neg_one, exp_injective
expEquiv πŸ“–CompOp
3 mathmath: logEquiv_symm, coe_expEquiv_apply, expEquiv_symm
expRecOn πŸ“–CompOp
2 mathmath: expRecOn_exp, expRecOn_zero
instAddMonoidWithOne πŸ“–CompOpβ€”
instCommGroupWithZero πŸ“–CompOpβ€”
instCommMonoidWithZero πŸ“–CompOp
3 mathmath: isOrderedMonoid, mulArchimedean_iff, instMulArchimedean
instCommSemigroup πŸ“–CompOpβ€”
instDivInvMonoid πŸ“–CompOpβ€”
instDivInvOneMonoid πŸ“–CompOpβ€”
instDivisionCommMonoid πŸ“–CompOpβ€”
instDivisionMonoid πŸ“–CompOpβ€”
instGroupWithZero πŸ“–CompOp
6 mathmath: OrderMonoidIso.val_inv_unitsWithZero_symm_apply, OrderMonoidIso.val_unitsWithZero_symm_apply, unitsWithZeroEquiv_symm_apply, val_inv_expOrderIso_apply, logEquiv_unitsMk0, val_inv_logOrderIso_symm_apply
instInvolutiveInv πŸ“–CompOpβ€”
instMonoidWithZero πŸ“–CompOp
22 mathmath: logOrderIso_apply, OrderMonoidIso.val_inv_unitsWithZero_symm_apply, val_expOrderIso_apply, logEquiv_symm, coe_unitsWithZeroEquiv_eq_units_val, coe_expEquiv_apply, expOrderIso_symm_apply, instIsCyclicUnitsWithZero, expEquiv_symm, OrderMonoidIso.val_unitsWithZero_symm_apply, LaurentSeries.exists_ratFunc_val_lt, instNontrivialUnits, unitsWithZeroEquiv_symm_apply, LaurentSeries.exists_Polynomial_intValuation_lt, OrderMonoidIso.unitsWithZero_apply, val_inv_expOrderIso_apply, logEquiv_apply, Valued.exists_pow_lt_of_le_exp_neg_one, val_logOrderIso_symm_apply, logEquiv_unitsMk0, val_inv_logOrderIso_symm_apply, unitsWithZeroEquiv_apply
instMulZeroClass πŸ“–CompOp
48 mathmath: unzero_mul, exp_add, instPosMulMonoWithZeroOfMulLeftMono, withZeroUnitsEquiv_symm_apply_coe, OrderMonoidIso.withZero_symm_apply_symm_apply, OrderMonoidIso.withZero_symm_apply_apply, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, ValuativeRel.nonempty_orderIso_withZeroMul_int_iff, MulEquiv.withZero_apply_symm_apply, lt_mul_exp_iff_le, OrderMonoidIso.withZeroUnits_symm_apply, OrderMonoidIso.withZeroUnits_apply, MulEquiv.withZero_apply_apply, instNoZeroDivisors, withZeroUnitsEquiv_symm_strictMono, OrderMonoidIso.withZero_apply_symm_apply, toMulBot_lt, instLeftDistribClass, log_mul, MonoidWithZeroHom.inl_mul_inr_eq_mk_of_unit, OrderMonoidIso.withZero_apply_apply, toMulBot_coe_ofAdd, FunctionField.InftyValuation.map_mul', instMulLeftMono, instRightDistribClass, instMulLeftReflectLT, toMonoidWithZeroHom_withZeroUnitsEquiv, toMulBot_zero, instMulPosMonoWithZeroOfMulRightMono, toMulBot_coe, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange, withZeroUnitsEquiv_symm_apply, MulEquiv.withZero_symm_apply_apply, IsDedekindDomain.HeightOneSpectrum.intValuation.map_mul', instMulPosStrictMonoWithZeroOfMulRightStrictMono, toMulBot_le, withZeroUnitsEquiv_apply, LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered, coe_mul, instPosMulStrictMonoWithZeroOfMulLeftStrictMono, MonoidWithZeroHom.commute_inl_inr, toMulBot_symm_bot, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero, toMulBot_strictMono, withZeroUnitsEquiv_strictMono, LinearOrderedCommGroupWithZero.discrete_or_denselyOrdered, MulEquiv.withZero_symm_apply_symm_apply
instMulZeroOneClass πŸ“–CompOp
68 mathmath: map'_mono, map'_zero, MonoidWithZeroHom.snd_comp_inl, map'_coe, lift'_symm_apply_apply, Ring.ordFrac_eq_div, NumberField.FinitePlace.norm_def', LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, map'_strictMono, Ring.ordFrac_eq_ord, MonoidWithZeroHom.fst_mono, WithZeroMulInt.toNNReal_pos, MulEquiv.withZero_apply_symm_apply, MonoidWithZeroHom.inl_strictMono, WithZeroMulInt.toNNReal_lt_one_iff, lift'_coe, map'_surjective, MulEquiv.withZero_apply_apply, OrderMonoidIso.withZero_apply_symm_apply, WithZeroMulInt.toNNReal_neg_apply, map'_injective, monoidWithZeroHom_ext_iff, MonoidWithZeroHom.fst_comp_inl, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, WithZeroMulInt.toNNReal_le_one_iff, MonoidWithZeroHom.inl_mul_inr_eq_mk_of_unit, OrderMonoidIso.withZero_apply_apply, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def, lift'_unique, NumberField.FinitePlace.norm_def_int, MonoidWithZeroHom.inr_mono, MonoidWithZeroHom.snd_inr, MonoidWithZeroHom.snd_inl_apply_of_ne_zero, toMonoidWithZeroHom_withZeroUnitsEquiv, MonoidWithZeroHom.inl_injective, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, LinearOrderedCommGroupWithZero.fst_comp_inl, MonoidWithZeroHom.snd_mono, MonoidWithZeroHom.fst_apply_coe, MonoidWithZeroHom.fst_inl, MonoidWithZeroHom.fst_surjective, WithZeroMulInt.toNNReal_eq_one_iff, MonoidWithZeroHom.snd_comp_inr, lift'_surjective, MonoidWithZeroHom.inr_apply_unit, LinearOrderedCommGroupWithZero.fst_apply, WithZeroMulInt.toNNReal_strictMono, MonoidWithZeroHom.fst_inr_apply_of_ne_zero, NumberField.toNNReal_valued_eq_adicAbv, MonoidWithZeroHom.inr_strictMono, map'_surjective_iff, WithZeroMulInt.toNNReal_pos_apply, MonoidWithZeroHom.inl_mono, map'_comp, lift'_zero, MonoidWithZeroHom.snd_apply_coe, LocallyFiniteOrder.orderMonoidWithZeroHom_strictMono, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply, MonoidWithZeroHom.inr_injective, map'_id, MonoidWithZeroHom.commute_inl_inr, MonoidWithZeroHom.fst_comp_inr, coeMonoidHom_apply, MonoidWithZeroHom.inl_apply_unit, MonoidWithZeroHom.snd_surjective, map'_injective_iff, map'_map'
instPowInt πŸ“–CompOp
3 mathmath: coe_zpow, log_zpow, exp_zsmul
instSemigroupWithZero πŸ“–CompOpβ€”
inv πŸ“–CompOp
4 mathmath: log_inv, coe_inv, inv_zero, exp_neg
invOneClass πŸ“–CompOpβ€”
lift' πŸ“–CompOp
6 mathmath: lift'_symm_apply_apply, lift'_coe, lift'_unique, toMonoidWithZeroHom_withZeroUnitsEquiv, lift'_surjective, lift'_zero
logEquiv πŸ“–CompOp
4 mathmath: logEquiv_symm, expEquiv_symm, logEquiv_apply, logEquiv_unitsMk0
map' πŸ“–CompOp
18 mathmath: map'_mono, map'_zero, map'_coe, map'_strictMono, MulEquiv.withZero_apply_symm_apply, map'_surjective, MulEquiv.withZero_apply_apply, OrderMonoidIso.withZero_apply_symm_apply, map'_injective, OrderMonoidIso.withZero_apply_apply, LinearOrderedCommGroupWithZero.fst_apply, map'_surjective_iff, map'_comp, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply, map'_id, map'_injective_iff, map'_map'
one πŸ“–CompOp
43 mathmath: Padic.withValUniformEquiv_norm_le_one_iff, recZeroCoe_one, IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, Int.padicValuation_lt_one_iff, IsDedekindDomain.HeightOneSpectrum.intValuation_le_one, WeierstrassCurve.valuation_Ξ”_aux_eq_of_isIntegral, Int.padicValuation_eq_one_iff, LaurentSeries.val_le_one_iff_eq_coe, WithZeroMulInt.toNNReal_lt_one_iff, log_one, WeierstrassCurve.IsMinimal.val_Ξ”_maximal, IsDedekindDomain.HeightOneSpectrum.valuation_div_le_one_iff, IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_dvd, Rat.valuation_le_one_iff_den, exp_eq_one, WeierstrassCurve.isGoodReduction_iff, coe_le_one, WithZeroMulInt.toNNReal_le_one_iff, FunctionField.InftyValuation.map_one', IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_mem, IsDedekindDomain.HeightOneSpectrum.intValuation.map_one', one_lt_coe, coe_lt_one, IsDedekindDomain.HeightOneSpectrum.intValuation_lt_one_iff_dvd, WeierstrassCurve.isMinimal_iff, IsDedekindDomain.HeightOneSpectrum.intValuation_eq_one_iff, Set.unit_valuation_eq_one, one_le_coe, WithZeroMulInt.toNNReal_eq_one_iff, FunctionField.inftyValuation.C, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, Padic.norm_rat_le_one_iff_padicValuation_le_one, Set.integer_valuation_le_one, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, Int.padicValuation_le_one, coe_one, WeierstrassCurve.IsGoodReduction.goodReduction, IsDedekindDomain.HeightOneSpectrum.valuation_le_one, instWellFoundedGTWithZeroMultiplicativeIntLeOne, exp_zero, IsDedekindDomain.HeightOneSpectrum.intValuation_lt_one_iff_mem, Rat.padicValuation_le_one_iff, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers
pow πŸ“–CompOp
3 mathmath: coe_pow, log_pow, exp_nsmul
unitsWithZeroEquiv πŸ“–CompOp
3 mathmath: coe_unitsWithZeroEquiv_eq_units_val, unitsWithZeroEquiv_symm_apply, unitsWithZeroEquiv_apply
withZeroUnitsEquiv πŸ“–CompOp
6 mathmath: withZeroUnitsEquiv_symm_apply_coe, withZeroUnitsEquiv_symm_strictMono, toMonoidWithZeroHom_withZeroUnitsEquiv, withZeroUnitsEquiv_symm_apply, withZeroUnitsEquiv_apply, withZeroUnitsEquiv_strictMono
Β«term_ᡐ⁰» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coeMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
WithZero
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
instMulZeroOneClass
MonoidHom.instFunLike
coeMonoidHom
coe
β€”β€”
coe_div πŸ“–mathematicalβ€”coe
WithZero
div
β€”β€”
coe_expEquiv_apply πŸ“–mathematicalβ€”Units.val
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
Equiv
Units
EquivLike.toFunLike
Equiv.instEquivLike
expEquiv
exp
β€”β€”
coe_inv πŸ“–mathematicalβ€”coe
WithZero
inv
β€”β€”
coe_mul πŸ“–mathematicalβ€”coe
WithZero
MulZeroClass.toMul
instMulZeroClass
β€”β€”
coe_one πŸ“–mathematicalβ€”coe
WithZero
one
β€”β€”
coe_pow πŸ“–mathematicalβ€”coe
WithZero
pow
β€”β€”
coe_unitsWithZeroEquiv_eq_units_val πŸ“–mathematicalβ€”coe
DFunLike.coe
MulEquiv
Units
WithZero
MonoidWithZero.toMonoid
instMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsWithZeroEquiv
Units.val
β€”coe_unzero
coe_zpow πŸ“–mathematicalβ€”coe
WithZero
instPowInt
β€”β€”
expEquiv_symm πŸ“–mathematicalβ€”Equiv.symm
Units
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
expEquiv
logEquiv
β€”β€”
expRecOn_exp πŸ“–mathematicalβ€”expRecOn
exp
β€”β€”
expRecOn_zero πŸ“–mathematicalβ€”expRecOn
WithZero
Multiplicative
instZero
β€”β€”
exp_add πŸ“–mathematicalβ€”exp
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
WithZero
Multiplicative
MulZeroClass.toMul
instMulZeroClass
Multiplicative.mul
β€”β€”
exp_eq_one πŸ“–mathematicalβ€”exp
WithZero
Multiplicative
one
instOneMultiplicativeOfZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”exp_zero
exp_inj πŸ“–mathematicalβ€”expβ€”exp_injective
exp_injective πŸ“–mathematicalβ€”WithZero
Multiplicative
exp
β€”Equiv.injective
coe_injective
exp_log πŸ“–mathematicalβ€”exp
log
β€”CanLift.prf
instCanLift
exp_ne_zero πŸ“–β€”β€”β€”β€”β€”
exp_neg πŸ“–mathematicalβ€”exp
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
WithZero
Multiplicative
inv
Multiplicative.inv
β€”β€”
exp_nsmul πŸ“–mathematicalβ€”exp
AddMonoid.toNatSMul
WithZero
Multiplicative
pow
instOneMultiplicativeOfZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Monoid.toNatPow
Multiplicative.monoid
β€”β€”
exp_sub πŸ“–mathematicalβ€”exp
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
WithZero
Multiplicative
div
Multiplicative.div
β€”β€”
exp_zero πŸ“–mathematicalβ€”exp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
WithZero
Multiplicative
one
instOneMultiplicativeOfZero
β€”β€”
exp_zsmul πŸ“–mathematicalβ€”exp
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPowInt
instOneMultiplicativeOfZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DivInvMonoid.toZPow
Multiplicative.divInvMonoid
β€”β€”
instCanLiftMultiplicativeExpNeOfNat πŸ“–mathematicalβ€”CanLift
WithZero
Multiplicative
exp
instZero
β€”β€”
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
WithZero
MulZeroClass.toMul
instMulZeroClass
instZero
β€”Option.mapβ‚‚_eq_none_iff
instNontrivialUnits πŸ“–mathematicalβ€”Nontrivial
Units
WithZero
MonoidWithZero.toMonoid
instMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Function.Surjective.nontrivial
Equiv.surjective
inv_zero πŸ“–mathematicalβ€”WithZero
inv
instZero
β€”β€”
lift'_coe πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
WithZero
instMulZeroOneClass
MonoidWithZeroHom.funLike
Equiv
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
EquivLike.toFunLike
Equiv.instEquivLike
lift'
coe
MonoidHom.instFunLike
β€”β€”
lift'_surjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidHom.instFunLike
WithZero
MonoidWithZeroHom
instMulZeroOneClass
MonoidWithZeroHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift'
β€”β€”
lift'_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidHom.instFunLike
Equiv
MonoidWithZeroHom
WithZero
instMulZeroOneClass
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift'
MonoidWithZeroHom.funLike
coe
β€”β€”
lift'_unique πŸ“–mathematicalβ€”DFunLike.coe
Equiv
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZeroHom
WithZero
instMulZeroOneClass
EquivLike.toFunLike
Equiv.instEquivLike
lift'
MonoidHom.comp
MonoidWithZeroHom.toMonoidHom
coeMonoidHom
β€”Equiv.apply_symm_apply
lift'_zero πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
WithZero
instMulZeroOneClass
MonoidWithZeroHom.funLike
Equiv
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
EquivLike.toFunLike
Equiv.instEquivLike
lift'
instZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
β€”β€”
logEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Units
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
Equiv.instEquivLike
logEquiv
log
Units.val
β€”β€”
logEquiv_symm πŸ“–mathematicalβ€”Equiv.symm
Units
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
logEquiv
expEquiv
β€”β€”
logEquiv_unitsMk0 πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Units
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
Equiv.instEquivLike
logEquiv
instGroupWithZero
Multiplicative.group
log
β€”logEquiv_apply
log_div πŸ“–mathematicalβ€”log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
div
Multiplicative.div
SubNegMonoid.toSub
β€”CanLift.prf
instCanLift
log_exp πŸ“–mathematicalβ€”log
exp
β€”β€”
log_inv πŸ“–mathematicalβ€”log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
inv
Multiplicative.inv
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”inv_zero
neg_zero
log_mul πŸ“–mathematicalβ€”log
WithZero
Multiplicative
MulZeroClass.toMul
instMulZeroClass
Multiplicative.mul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”CanLift.prf
instCanLift
log_one πŸ“–mathematicalβ€”log
WithZero
Multiplicative
one
instOneMultiplicativeOfZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”
log_pow πŸ“–mathematicalβ€”log
WithZero
Multiplicative
pow
instOneMultiplicativeOfZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Monoid.toNatPow
Multiplicative.monoid
AddMonoid.toNatSMul
β€”pow_zero
nsmul_zero
zero_pow
log_zero πŸ“–mathematicalβ€”log
WithZero
Multiplicative
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”
log_zpow πŸ“–mathematicalβ€”log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPowInt
instOneMultiplicativeOfZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DivInvMonoid.toZPow
Multiplicative.divInvMonoid
SubNegMonoid.toZSMul
β€”zpow_natCast
log_pow
natCast_zsmul
zpow_negSucc
log_inv
negSucc_zsmul
map'_coe πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
WithZero
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
β€”β€”
map'_comp πŸ“–mathematicalβ€”map'
MonoidHom.comp
MulOneClass.toMulOne
MonoidWithZeroHom.comp
WithZero
instMulZeroOneClass
β€”MonoidWithZeroHom.ext
map'_map'
map'_id πŸ“–mathematicalβ€”MonoidHomClass.toMonoidHom
WithZero
MonoidWithZeroHom
instMulZeroOneClass
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZeroHom.funLike
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
map'
MonoidHom.id
β€”MonoidHom.ext
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
map'_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
WithZero
MonoidWithZeroHom
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
β€”map'_injective_iff
map'_injective_iff πŸ“–mathematicalβ€”WithZero
DFunLike.coe
MonoidWithZeroHom
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
map'_map' πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
WithZero
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
MonoidHom.comp
MulOneClass.toMulOne
β€”β€”
map'_surjective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
WithZero
MonoidWithZeroHom
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
β€”map'_surjective_iff
map'_surjective_iff πŸ“–mathematicalβ€”WithZero
DFunLike.coe
MonoidWithZeroHom
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
map'_zero πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
WithZero
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
instZero
β€”β€”
monoidWithZeroHom_ext πŸ“–β€”MonoidHom.comp
WithZero
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
instMulZeroOneClass
MonoidWithZeroHom.toMonoidHom
coeMonoidHom
β€”β€”DFunLike.ext
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
DFunLike.congr_fun
monoidWithZeroHom_ext_iff πŸ“–mathematicalβ€”MonoidHom.comp
WithZero
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
instMulZeroOneClass
MonoidWithZeroHom.toMonoidHom
coeMonoidHom
β€”monoidWithZeroHom_ext
recZeroCoe_one πŸ“–mathematicalβ€”recZeroCoe
WithZero
one
β€”β€”
unitsWithZeroEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Units
WithZero
MonoidWithZero.toMonoid
instMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Units.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsWithZeroEquiv
unzero
Units.val
β€”β€”
unitsWithZeroEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Units
WithZero
MonoidWithZero.toMonoid
instMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
unitsWithZeroEquiv
instGroupWithZero
coe
coe_ne_zero
β€”β€”
unzero_mul πŸ“–mathematicalβ€”unzero
WithZero
MulZeroClass.toMul
instMulZeroClass
left_ne_zero_of_mul
right_ne_zero_of_mul
β€”left_ne_zero_of_mul
right_ne_zero_of_mul
coe_unzero
withZeroUnitsEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
WithZero
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulZeroClass.toMul
instMulZeroClass
Units.instMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
withZeroUnitsEquiv
recZeroCoe
MulZeroClass.toZero
Units.val
β€”β€”
withZeroUnitsEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
WithZero
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
instMulZeroClass
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
withZeroUnitsEquiv
MulZeroClass.toZero
instZero
coe
β€”β€”
withZeroUnitsEquiv_symm_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
WithZero
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
instMulZeroClass
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
withZeroUnitsEquiv
Units.val
coe
β€”GroupWithZero.toNontrivial

---

← Back to Index