Theoremsbijective, injective, surjective, toFun_apply, toPerm_apply, toPerm_injective, toPerm_symm_apply, vadd_bijective, vadd_left_cancel, smul_bijective, smul_left_cancel, bijective, injective, surjective, toFun_apply, toPerm_apply, toPerm_injective, toPerm_symm_apply, toMonoidEnd_apply, toMonoidHom_apply, arrowAction_smul, arrowAddAction_vadd, invOf_smul_eq_iff, invOf_smul_smul, isCancelSMul_iff_eq_one_of_smul_eq, isCancelVAdd_iff_eq_zero_of_vadd_eq, isUnit_smul_iff, smul_div', smul_eq_iff_eq_invOf_smul, smul_eq_iff_eq_inv_smul, smul_inv', smul_invOf_smul, smul_left_cancel, smul_left_cancel_iff, smul_pow', smul_zpow', vadd_eq_iff_eq_neg_vadd, vadd_left_cancel, vadd_left_cancel_iff | 39 |