Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Group/Action/Defs.lean

Statistics

MetricCount
DefinitionstoVAdd, toVAddAddOpposite, AddAction, toAddSemigroupAction, toAddAction, AddSemigroupAction, toVAdd, addAction, mulAction, addAction, mulAction, IsCancelSMul, IsCancelVAdd, IsCentralScalar, IsCentralVAdd, IsLeftCancelSMul, IsLeftCancelVAdd, IsScalarTower, bundled_maps_over_different_rings, toMulAction, toSMul, toSMulMulOpposite, toSemigroupAction, MulDistribMulAction, toMulAction, comp, smul, SMulCommClass, SMulDistribClass, SemigroupAction, toSMul, comp, vadd, VAddAssocClass, VAddCommClass
35
Theoremsext, ext_iff, zero_vadd, vadd_left, vadd_right, vadd_eq_add_unop, vaddAssocClass, add_vadd, ext, ext_iff, smul_left, smul_left_iff, smul_right, smul_right_iff, smulCommClass, vaddCommClass, smulCommClass, vaddCommClass, eq_one_of_smul, left_cancel, right_cancel, right_cancel', toIsLeftCancelSMul, eq_zero_of_vadd, left_cancel, right_cancel, right_cancel', toIsLeftCancelVAdd, op_smul_eq_smul, unop_smul_eq_smul, op_vadd_eq_vadd, unop_vadd_eq_vadd, left_cancel, left_cancel', left_cancel, left_cancel', left, of_commMonoid, of_smul_one_mul, op_left, op_right, smul_assoc, to₁₂₄, to₁₃₄, to₂₃₄, ext, ext_iff, one_smul, ext, ext_iff, smul_mul, smul_one, smul_eq_mul_unop, isScalarTower, smulCommClass, smulCommClass', of_commMonoid, of_mul_smul_one, op_left, op_right, smul_comm, smul_distrib_smul, isScalarTower, ext, ext_iff, mul_smul, vaddAssocClass, vaddCommClass, vaddCommClass', left, of_vadd_zero_add, op_left, op_right, to₁₂₄, to₁₃₄, to₂₃₄, vadd_assoc, of_add_vadd_zero, op_left, op_right, vadd_comm, add_vadd_add_comm, add_vadd_comm, add_vadd_zero, comp_smul_left, comp_vadd_left, eq_inv_smul_iff, eq_neg_vadd_iff, instIsCancelSMul, instIsCancelVAdd, instIsLeftCancelSMul, instIsLeftCancelSMul_1, instIsLeftCancelVAdd, instIsLeftCancelVAdd_1, inv_smul_eq_iff, inv_smul_smul, isScalarTower_iff_smulCommClass_of_commMonoid, mul_smul_comm, mul_smul_mul_comm, mul_smul_one, neg_vadd_eq_iff, neg_vadd_vadd, one_smul, one_smul_eq_id, op_smul_eq_mul, op_vadd_eq_add, smulCommClass_self, smul_assoc, smul_div_assoc, smul_eq_mul, smul_inv, smul_inv_smul, smul_iterate, smul_iterate_apply, smul_mul', smul_mul_assoc, smul_mul_smul, smul_mul_smul_comm, smul_one_mul, smul_one_smul, smul_pow, smul_smul, smul_smul_smul_comm, smul_zpow, vaddCommClass_self, vadd_add_assoc, vadd_add_vadd, vadd_add_vadd_comm, vadd_assoc, vadd_eq_add, vadd_iterate, vadd_iterate_apply, vadd_neg_vadd, vadd_sub_assoc, vadd_vadd, vadd_vadd_vadd_comm, vadd_zero_add, vadd_zero_vadd, zero_vadd, zero_vadd_eq_id
140
Total175

Add

Definitions

NameCategoryTheorems
toVAdd πŸ“–CompOp
41 mathmath: AddSemigroupIdeal.mem_closure, AddSemigroup.vaddAssocClass, AddSemigroupIdeal.subset_closure, MeasureTheory.Measure.IsAddLeftInvariant.vaddInvariantMeasure, Set.op_vadd_set_add_eq_add_vadd_set, AddCommSemigroup.isCentralVAdd, AddSemigroupIdeal.closure_le, Finset.image_vadd_distrib, AddSemigroupIdeal.coe_closure, Set.add_subset_iff_left, AddSemigroup.opposite_vaddCommClass', Set.image_vadd_distrib, AddSemigroupIdeal.coe_closure', Additive.isIsIsometricVAdd', Finset.op_vadd_finset_add_eq_add_vadd_finset, AddSemigroupIdeal.mem_closure'', AddSemigroupIdeal.instWellFoundedGT, Finset.add_subset_iff_left, Finset.singleton_add, AddSemigroupIdeal.mem_closure_of_mem, Set.range_add, Set.vadd_set_subset_add, mem_leftAddCoset, Finset.vadd_finset_subset_add, leftAddCoset_rightAddCoset, Finset.pairwiseDisjoint_vadd_iff, vadd_eq_add, AddSemigroup.opposite_vaddCommClass, AddSemigroupIdeal.mem_closure', Set.pairwiseDisjoint_vadd_iff, AddSemigroupIdeal.closure_mono, measurableSMulβ‚‚_of_add, ContinuousAdd.to_continuousVAdd, measurableVAdd_of_add, Prod.vaddCommClassBoth, Absorbent.vadd_absorbs, leftAddCoset_assoc, instFaithfulVAddOfIsRightCancelAdd, instFaithfulVAdd, Prod.isIsometricVAdd', Set.pair_add
toVAddAddOpposite πŸ“–CompOp
32 mathmath: Prod.isIsometricVAdd'', Finset.add_singleton, Set.op_vadd_set_add_eq_add_vadd_set, AddCommSemigroup.isCentralVAdd, VAddAssocClass.opposite_mid, Set.op_vadd_set_subset_add, mem_rightAddCoset, instFaithfulVAddAddOpposite, Finset.op_vadd_finset_subset_add, Set.image_op_vadd, AddSemigroup.opposite_vaddCommClass', MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op, Finset.add_subset_iff_right, Set.iUnion_op_vadd_set, Finset.biUnion_op_vadd_finset, Set.add_pair, Finset.op_vadd_finset_add_eq_add_vadd_finset, ContinuousAdd.to_continuousVAdd_op, leftAddCoset_rightAddCoset, VAddCommClass.opposite_mid, AddOpposite.vadd_eq_add_unop, AddSemigroup.opposite_vaddCommClass, Set.add_subset_iff_right, op_vadd_eq_add, rightAddCoset_assoc, Additive.isIsIsometricVAdd'', measurableVAdd_opposite_of_add, instFaithfulVAddAddOppositeOfIsLeftCancelAdd, AddLeftCancelMonoid.to_faithfulVAdd_addOpposite, AddAction.Regular.isPretransitive_addOpposite, measurableSMulβ‚‚_opposite_of_add, Set.image_op_vadd_distrib

AddAction

Definitions

NameCategoryTheorems
toAddSemigroupAction πŸ“–CompOp
868 mathmath: Set.ncard_vadd_set, mem_stabilizer_set_iff_subset_vadd_set, ball_sub, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, AffineIsometryEquiv.pointReflection_apply, Metric.vadd_closedBall, AddSubmonoid.continuousVAdd, EuclideanGeometry.dist_smul_vadd_sq, SubAddAction.map_ofFixingAddSubgroupUnion_bijective, IsOpen.vadd_left, isTopologicallyTransitive_iff_dense_iUnion_preimage, Equiv.coe_vaddConst, IsTrivialBlock.vadd_iff, SubAddAction.notMem_val_image, AddSubgroup.vadd_opposite_image_add_preimage', IsPreprimitive.of_isTrivialBlock_base, EuclideanGeometry.reflection_orthogonal_vadd, Equiv.coe_constVSub_symm, orbit_eq_iff, fderivWithin_comp_add_left, rank_le_card_isVisible, isPeriodicPt_vadd_iff, AffineSubspace.sSameSide_vadd_right_iff, AddSubgroup.vaddCommClass_left, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, IsOpen.iUnion_preimage_vadd, AffineSubspace.setOf_sSameSide_eq_image2, MeasureTheory.vadd_ae, IsUpperSet.vadd, VAddCommClass.of_add_vadd_zero, Homeomorph.vadd_symm_apply, AffineEquiv.constVAdd_apply, nsmul_vadd_mod_minimalPeriod, sub_add_vsub_comm, isAddQuotientCoveringMap_iff_isCoveringMap_and, mem_addSubgroup_orbit_iff, rightAddCoset_zero, zsmul_period_add_vadd, nhds_vadd, nonempty_orbit, Finset.vadd_finset_eq_univ, Convex.vadd, Finset.neg_op_vadd_finset_distrib, SetLike.vadd_of_tower_def, mapsTo_vadd_orbit, vadd_eq_vadd_iff_neg_add_eq_vsub, vadd_vsub_assoc, orbitRel_apply, vadd_mem_fixedPoints_of_normal, IsPretransitive.of_vaddAssocClass, vadd_eq_self_of_preimage_zsmul_eq_self, isTopologicallyTransitive_iff, SubAddAction.ofFixingAddSubgroup_of_inclusion_injective, rightAddCoset_mem_rightAddCoset, Affine.Simplex.centroid_eq_smul_sum_vsub_vadd, QuotientAddGroup.univ_eq_iUnion_vadd, Homeomorph.vaddConst_apply, Dense.vadd, derivWithin_comp_const_sub, Set.iUnion_neg_vadd, vadd_right_mem_affineSpan_pair, AddConstMap.coe_addLeftHom_apply, mem_const_vadd_affineSegment, AffineSubspace.wOppSide_smul_vsub_vadd_left, IsAddUnit.aemeasurable_const_vadd_iff, vsub_vadd_comm, SubAddAction.ofFixingAddSubgroup_of_singleton_bijective, Sbtw.vadd_const, AddCircle.isAddFundamentalDomain_of_ae_ball, orbit.pairwiseDisjoint, iteratedFDerivWithin_comp_add_right', MeasureTheory.integral_vadd_eq_self, Supports.vadd, UpperHalfPlane.isometry_real_vadd, approxAddOrderOf.vadd_eq_of_mul_dvd, Multiset.vadd_sum, AffineSubspace.vadd_mem_mk', Set.vadd_set_compl, MeasureTheory.mem_addFundamentalFrontier, EMetric.vadd_ball, AffineIsometryEquiv.coe_constVAdd, vadd_mem_spanPoints_of_mem_spanPoints_of_mem_vectorSpan, stabilizer_vadd_eq_stabilizer_map_conj, IsLowerSet.vadd_subset, pretransitive_iff_unique_quotient_of_nonempty, smul_vsub_rev_vadd_mem_affineSpan_pair, SubAddAction.mem_ofStabilizer_iff, tendsto_const_vadd_iff, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, QuotientAddGroup.measurableVAdd, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, Affine.Triangle.orthocenter_eq_smul_vsub_vadd_circumcenter, Quotient.vadd_coe, EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint, threeAPFree_vadd_set, Finset.vadd_finset_univ, IsometryEquiv.constVSub_symm_apply, EuclideanGeometry.angle_vadd_const, isLinearSet_iff, Quotient.coe_vadd_out, vadd_vadd, isPretransitive_compHom, continuousVAdd_compHom, FreeAddMonoid.vadd_def, AffineSubspace.sOppSide_vadd_right_iff, Finset.vadd_addConvolution_eq_addConvolution_neg_add, MeasureTheory.measure_neg_vadd_inter, AffineIndependent.vadd, collinear_iff_of_mem, IsOpen.left_addCoset, AddSubmonoid.nsmul_vadd_mem_closure_vadd, Set.vadd_set_vsub_vadd_set, exists_disjoint_vadd_of_isCompact, AffineMap.map_vadd', Set.vadd_set_sdiff, Finset.op_vadd_stabilizer_of_no_doubling, orbit_fixingAddSubgroup_compl_subset, SetLike.instVAddCommClassSubtypeMem_1, QuotientAddGroup.instContinuousVAdd, vsub_vadd_eq_vsub_sub, IsUniformAddGroup.to_uniformContinuousConstVAdd, IsLowerSet.vadd, EuclideanGeometry.orthogonalProjection_apply_mem, SetLike.instVAddCommClassSubtypeMem_2, AffineBasis.coe_vadd, isPreprimitive_ofFixingAddSubgroup_conj_iff, instIsOrderedVAddOfIsOrderedAddMonoid, AddSubgroup.vaddCommClass_right, orbitZMultiplesEquiv_symm_apply', IsBlock.of_orbit, IsQuasiPreprimitive.isPretransitive_of_normal, orbitZMultiplesEquiv_symm_apply, Function.Embedding.vadd_apply, Finset.weightedVSubOfPoint_vadd, AffineSubspace.smul_vsub_vadd_mem, nndist_vadd_cancel_right, Convex.smul_vadd_mem_of_mem_nhds_of_mem_asymptoticCone, Set.vadd_set_pi_of_isAddUnit, mem_stabilizer_iff, IsAddFoelner.tendsto_meas_vadd_symmDiff_vadd, Set.OrdConnected.vadd, Filter.vadd_tendsto_vadd_iff, sbtw_vadd_const_iff, IsAddUnit.preimage_vadd_setβ‚›β‚—, Set.neg_op_vadd_set_distrib, HomogeneousIdeal.toAddSubmonoid_irrelevant_le, IsAddQuotientCoveringMap.isCancelVAdd, vadd_vsub_eq_sub_vsub, iteratedFDerivWithin_comp_add_left, Set.vadd_sub_vadd_comm, Set.pairwise_disjoint_vadd_iff, SubAddAction.ofFixingAddSubgroup.isMultiplyPretransitive, SubAddAction.ofFixingAddSubgroup.isMultiplyPretransitive', isBlock_iff_vadd_eq_of_nonempty, SubAddAction.ofStabilizer.isPretransitive_iff, UpperHalfPlane.vadd_re, affinity_unitClosedBall, mem_orbit_vadd, IsAddUnit.vadd, vadd_eq_vadd_iff_sub_eq_vsub, vadd_neg_mem_fixedBy_iff_mem_fixedBy, Function.Periodic.map_vadd_multiples, ContinuousAffineMap.vadd_toAffineMap, SubAddAction.stabilizer_of_subMul.addSubmonoid, MeasureTheory.Measure.instVAddInvariantMeasureSubtypeMemAddSubmonoidOfIsAddLeftInvariant, IsPreprimitive.of_isTrivialBlock_of_notMem_fixedPoints, AddOreLocalization.oreSub_eq_iff, EuclideanGeometry.orthogonalProjection_apply', MeasureTheory.measure_vadd, pretransitive_iff_subsingleton_quotient, Metric.preimage_vadd_ball, instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid, op_vadd_add, Finite.to_properlyDiscontinuousVAdd, stabilizer_vadd_eq_right, Regular.isPretransitive, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, IsTopologicallyTransitive.exists_vadd_inter, wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg, Finset.card_vadd_finset, Set.powersetCard.isPretransitive_of_isMultiplyPretransitive', Metric.vadd_ball, dist_vadd_cancel_right, isAddFundamentalDomain_Ioc, Set.powersetCard.addActionHom_of_embedding_surjective, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, Set.vadd_mem_vadd_set_iff, Multiplicative.mulAction_isPretransitive, instIsLeftCancelVAdd_1, FreeAddMonoid.ofList_vadd, instErgodicVAddAddOppositeOfIsAddRightInvariant, Finset.vadd_finset_symmDiff, IsClosed.vadd_right_of_isCompact, Set.vadd_Icc, AffineSpace.asymptoticNhds_vadd_pure, measurableVAdd_iterateAddAct, Finset.vadd_finset_inter, vadd_eq_iff_eq_neg_vadd, IsAddFoelner.mean_vadd_eq_mean_vadd, orbit_addSubgroup_eq_self_of_mem, IsSemilinearSet.vadd, vadd_zero_vadd, convexHull_vadd, isPretransitive_of_is_two_pretransitive, sub_smul_slope_vadd, vadd_singleton_mem_nhds_of_sigmaCompact, NonarchimedeanAddGroup.exists_openAddSubgroup_separating, AddOreLocalization.vadd_oreSub, AffineSubspace.setOf_wOppSide_eq_image2, MeasureTheory.vadd_set_ae_le, IsCompact.exists_finite_cover_vadd, MeasureTheory.measure_sdiff_neg_vadd, nndist_vadd_left, Metric.preimage_vadd_closedEBall, SubAddAction.ofFixingAddSubgroup_of_eq_bijective, HahnSeries.SummableFamily.embDomain_succ_smul_powers, isOpenMap_vadd, AddUnits.vaddAssocClass', Finset.addDysonETransform_snd, vadd_fixedBy, Finset.vadd_finset_subset_iff, MeasureTheory.measure_neg_vadd_symmDiff, AffineSubspace.coe_pointwise_vadd, AffineEquiv.map_vadd, vadd_vsub_vadd_cancel_right, AffineSubspace.wSameSide_vadd_left_iff, Fin.partialSum_left_neg, SubAddAction.vaddAssocClass', HahnSeries.of_symm_smul_of_eq_mul, mem_vadd_const_affineSegment, image_inter_image_iff, VAddAssocClass.left, AddTorsor.vadd_vsub', vadd_mem_affineSpan_of_mem_affineSpan_of_mem_vectorSpan, continuousAt_const_vadd_iff, AffineMap.vadd_linear, isClosedMap_vadd, IsAddQuotientCoveringMap.apply_eq_iff_mem_orbit, IsAddUnit.vadd_tendsto_vadd_iff, Quotient.mk_vadd_out, measurable_const_vadd_iff, IsAddUnit.preimage_vadd_set, IsUpperSet.vadd_subset, ProperVAdd.isProperMap_vadd_pair, Filter.Tendsto.const_vadd_asymptoticNhds, SubAddAction.val_image_orbit, zmultiplesQuotientStabilizerEquiv_symm_apply, SubAddAction.SMulMemClass.coe_subtype, mem_fixingAddSubmonoid_iff, arrowAddAction_vadd, smul_vsub_vadd_mem_affineSpan_pair, IsOpen.dense_iUnion_preimage_vadd, MeasureTheory.tendsto_measure_vadd_diff_isCompact_isClosed, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, Finset.affineCombination_eq_weightedVSubOfPoint_vadd_of_sum_eq_one, HomogeneousIdeal.irrelevant_le, AddUnits.val_vadd, Set.vadd_univ, AddGroup.preimage_vadd_set, AffineMap.vadd_lineMap, op_vadd_coe_set, Set.vadd_graphOn_univ, affinity_unitBall, isSimplyConnected_vadd_set_iff, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, Set.vadd_set_eq_univ, zeroEmbedding_isPretransitive_iff, surjective, AmpleSet.vadd, IsTrivialBlock.vadd, Set.vadd_set_subset_vadd_set_iff, Metric.vadd_sphere, Metric.preimage_vadd_sphere, StrictConvex.affinity, MeasureTheory.mem_addFundamentalInterior, op_vadd_op_vadd, iteratedFDerivWithin_comp_sub, orbit.coe_vadd, differentiableWithinAt_comp_sub, vadd_ball_zero, EuclideanGeometry.orthogonalProjection_vadd_eq_self, HahnModule.coeff_smul_order_add_order, HahnModule.instIsScalarTowerHahnSeries_1, isPretransitive_iff_orbit_eq_univ, nsmul_vadd_eq_iff_minimalPeriod_dvd, Set.vadd_inter_nonempty_iff', IsClosed.vadd, AddSubgroup.instMeasurableVAdd, IsTopologicalAddTorsor.toContinuousVAdd, mem_orbit_self, AffineIsometryEquiv.coe_vaddConst, Set.preimage_vadd_neg, Ideal.homogeneousHull_eq_iSup, MeasureTheory.measure_vadd_eq_zero_iff, SubAddAction.ofFixingAddSubgroup_insert_map_bijective, interior_vadd, mem_leftAddCoset_iff, VAddAssocClass.of_vadd_zero_add, signedDist_vadd_left_swap, mem_rightAddCoset_iff, VAddAssocClass.to₂₃₄, orbitRel.Quotient.mapsTo_vadd_orbit, Finset.add_mem_vadd_finset_iff, vadd_orbit_eq_orbit_vadd, EuclideanGeometry.reflection_apply_of_mem, isProperLinearSet_iff, vadd_orbit, minimalPeriod_eq_card, AddSubgroup.continuousVAdd, AddActionHom.map_mem_fixedBy, AddGroup.preimage_vadd_setβ‚›β‚—, Finset.vadd_finset_subsetSum_subset_subsetSum_insert, zsmul_vadd_eq_iff_minimalPeriod_dvd, Finset.card_inter_vadd, SubAddAction.fixingAddSubgroup_vadd_eq_fixingAddSubgroup_map_conj, vadd_neg_vadd, MeasureTheory.measure_neg_vadd_sdiff, Seminorm.vadd_closedBall, instErgodicVAddOfIsAddLeftInvariant, LipschitzWith.vadd, Finset.addDysonETransform_fst, DilationEquiv.smulTorsor_apply, Set.vadd_set_univ, AffineSubspace.vadd_mem_iff_mem_of_mem_direction, NormedAddGroup.to_isIsometricVAdd_left, signedDist_vadd_right, neg_vadd_vadd, IsClosed.vadd_left_of_isCompact, NormedAddGroup.to_isIsometricVAdd_right, AffineMap.map_vadd, ZSpan.isAddFundamentalDomain', affineSegment_const_vadd_image, Sbtw.const_vadd, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, vadd_closedBall'', Finset.mem_neg_vadd_finset_iff, AddSubgroup.vadd_leftQuotientEquiv, isInvariantBlock_iff_isFixedBlock, AffineMap.lineMap_vadd_apply, compHom_vadd_def, Metric.preimage_vadd_closedBall, measurableEmbedding_const_vadd, AddSubgroup.instFaithfulVAddSubtypeMem, HahnModule.SMulCommClass, mem_own_leftAddCoset, SubAddAction.nat_card_ofStabilizer_eq, vadd_orbit_subset, SubAddAction.ofFixingAddSubgroup_of_eq_apply, Finite.finite_addAction_orbit, continuousWithinAt_const_vadd_iff, AffineSubspace.coe_vadd, AddOreLocalization.vadd_cancel', Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, List.vadd_sum, IsBlock.of_subset, vadd_segment, AddSubgroup.instVAddAssocClassSubtypeMem, Set.powersetCard.faithfulVAdd, isBlock_iff_vadd_eq_or_disjoint, MeasureTheory.vadd_mem_ae, dist_vadd_left, ContinuousAffineMap.map_vadd, iteratedFDerivWithin_comp_add_right, vadd_mem_nhds_vadd, Finset.affineCombination_apply, orbit_addSubmonoid_subset, ProperVAdd.toContinuousVAdd, coe_aestabilizer, mem_stabilizer_finset', AffineSpace.vadd_asymptoticNhds, zero_vadd_eq_id, midpoint_vadd_midpoint, Set.vadd_set_subset_iff_subset_neg_vadd_set, AffineSubspace.wSameSide_smul_vsub_vadd_left, IsFixedBlock.orbit, IsPreprimitive.exists_mem_vadd_and_notMem_vadd, translate_eq_domAddActMk_vadd, AddOreLocalization.expand, AmpleSet.vadd_iff, IsOpen.iUnion_vadd, Set.exists_vadd_inter_vadd_subset_vadd_neg_add_inter_neg_add, IsTrivialBlock.isBlock, SubAddAction.isCentralVAdd, vadd_mem_nhds_self, ZSpan.exist_unique_vadd_mem_fundamentalDomain, mem_stabilizer_set', nsmul_vadd_eq_iff_period_dvd, Function.Periodic.map_vadd_zmultiples, dist_vadd_right, IsMinimal.dense_orbit, AddSubgroup.leftTransversals.vadd_diff_vadd, linearIndependent_set_iff_affineIndependent_vadd_union_singleton, AffineMap.lineMap_apply, Affine.Simplex.faceOppositeCentroid_eq_sum_vsub_vadd, differentiableWithinAt_comp_add_right, AddSubgroup.instMeasurableConstVAdd, SubAddAction.vadd_mem_iff', Finset.weightedVSubOfPoint_vadd_eq_of_sum_eq_one, Set.vadd_graphOn, AddSubgroup.leftCoset_cover_const_iff_surjOn, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, IsAddUnit.vadd_left_cancel, Set.powersetCard.addActionHom_singleton_bijective, rightAddCoset_eq_iff, StarConvex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, EuclideanGeometry.inversion_def, vadd_zsmul_movedBy_eq_of_addCommute, toFun_apply, SubAddAction.ofStabilizer.isMultiplyPretransitive_iff, IsModuleFiltration.mk_int, zsmul_vadd_mod_minimalPeriod, comp_vadd_left, nsmul_period_vadd, ZSpan.isAddFundamentalDomain, properVAdd_iff, AddUnits.vaddAssocClass'_left, orbitRel.Quotient.orbit.coe_vadd, Affine.Simplex.centroid_eq_smul_vsub_vadd_point, period_eq_minimalPeriod, ergodic_vadd_of_denseRange_nsmul, Set.infinite_vadd_set, nndist_vadd_right, AddTorsor.vsub_vadd', op_vadd_set_stabilizer_subset, leftAddCoset_eq_iff, vadd_iterate, zero_vadd, AffineSubspace.mem_affineSpan_insert_iff, AddOreLocalization.oreSub_vadd_char, Affine.Simplex.mongePoint_eq_smul_vsub_vadd_circumcenter, isBlock_top, HahnModule.coeff_single_zero_smul, eq_addCosets_of_normal, addSubgroup_vadd_def, ProperVAdd.isProperMap_vadd_pair_set, MeasureTheory.eventually_nhds_zero_measure_vadd_diff_lt, mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd, mem_affineSpan_iff_exists, nsmul_add_period_vadd, MeasureTheory.vadd_set_ae_eq, AddMonoidHom.preimage_vadd_setβ‚›β‚—, Metric.vadd_closedEBall, aemeasurable_const_vadd_iff, Set.natCard_vadd_set, IsBlock.orbit, Measurable.measurableSMulβ‚‚_iterateAddAct, orbitRel.Quotient.mem_addSubgroup_orbit_iff', isBlock_iff_disjoint_vadd_of_ne, preimage_vadd_setβ‚›β‚—_of_isAddUnit_isAddUnit, Set.powersetCard.coe_addActionHom_of_embedding, Finset.weightedVSub_vadd, AffineEquiv.ofLinearEquiv_apply, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, vadd_zsmul_fixedBy_eq_of_addCommute, AffineEquiv.pointReflection_apply, period_eq_zero_iff, Homeomorph.vadd_apply, AffineSubspace.wOppSide_smul_vsub_vadd_right, isOpenMap_vadd_of_sigmaCompact, isCancelVAdd_iff_stabilizer_eq_bot, AddUnits.measurableVAdd, mem_fixedBy, AffineMap.coe_lineMap, Equiv.coe_constVAdd, AffineSubspace.vadd_mem_of_mem_direction, Set.op_vadd_inter_nonempty_iff, AffineEquiv.coe_constVSub_symm, Finset.op_vadd_addConvolution_eq_addConvolution_vadd, SubAddAction.val_preimage_orbit, vectorSpan_vadd, MeasureTheory.Subgroup.vaddInvariantMeasure, Bornology.IsVonNBounded.vadd, vadd_openSegment, toPerm_symm_apply, SubAddAction.image_inclusion, IsLinearSet.vadd, MeasureTheory.vaddInvariantMeasure_iterateAddAct, AddUnits.continuousVAdd, vadd_vsub_vadd_comm, ergodic_vadd_of_denseRange_zsmul, orbitEquivQuotientStabilizer_symm_apply, AddSubgroup.IsComplement.pairwiseDisjoint_vadd, AffineMap.vadd_apply, SubAddAction.mem_fixingAddSubgroup_insert_iff, AddSubgroup.vadd_def, Set.disjoint_vadd_set, AffineSubspace.sSameSide_smul_vsub_vadd_right, ball_add, lowerClosure_vadd, IsCompact.sub_closedBall, SubAddAction.mem_orbit_subAdd_iff, is_two_pretransitive_iff, Function.Embedding.coe_vadd, properVAdd_iff_continuousVAdd_ultrafilter_tendsto, MeasurableEquiv.vadd_apply, EuclideanGeometry.dist_sq_smul_orthogonal_vadd_smul_orthogonal_vadd, dense_orbit, signedDist_vadd_right_swap, Wbtw.vadd_const, card_orbit_mul_card_stabilizer_eq_card_addGroup, Wbtw.const_vadd, EMetric.vadd_closedBall, BlockMem.coe_top, Finsupp.mem_vaddAntidiagonal_of_addGroup, SubAddAction.compl_def, orbit.eq_or_disjoint, add_ball, AffineMap.homothety_apply, dist_vadd_cancel_left, hasFDerivWithinAt_comp_add_right, isMultiplyPreprimitive_succ_iff_ofStabilizer, ContinuousAffineMap.vadd_contLinear, orbit_addSubgroup_zero_eq_self, IsometryEquiv.vaddConst_apply, isLinearSet_iff_exists_fg_eq_vadd, slope_vadd_const, QuotientAddGroup.instContinuousConstVAdd, affineSegment_vadd_const_image, SubAddAction.ofStabilizer.snoc_castSucc, Set.Infinite.vadd_set, IsPretransitive.of_compHom, orbit_eq_univ, vadd_iterate_apply, AffineIsometry.map_vadd, isTopologicallyTransitive_iff_dense_iUnion, UpperHalfPlane.vadd_right_cancel_iff, quotient_preimage_image_eq_union_add, NormedAddTorsor.to_isIsIsometricVAdd, instIsPretransitiveOfSubsingleton, Prod.mk_vadd_mk, Cardinal.mk_vadd_set, vadd_mem_of_set_mem_fixedBy, SetLike.mk_vadd_of_tower_mk, signedDist_vadd_left, mem_stabilizer_finset_iff_subset_vadd_finset, isSimpleOrder_blockMem_iff_isPreprimitive, QuotientAddGroup.orbit_eq_out_vadd, Finset.weightedVSub_vadd_affineCombination, SetLike.GradedMul.toGradedSMul, iteratedFDerivWithin_comp_add_left', Set.mem_vadd_set_neg, AddSubmonoid.instMeasurableConstVAdd, MeasureTheory.measure_inter_neg_vadd, SubAddAction.ENat_card_ofStabilizer_add_zero_eq, Finset.addETransformRight_snd, mem_own_rightAddCoset, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, AddMonoidHom.vaddZeroHom_apply, isBlock_addSubgroup, SubAddAction.fixingAddSubgroup_of_insert, AffineSubspace.vadd_mem_iff_mem_direction, ext_iff, BlockMem.coe_bot, zero_vadd, edist_vadd_vadd_le, minimalPeriod_pos, is_zero_preprimitive_iff, IsOpen.exists_vadd_mem, ZLattice.isAddFundamentalDomain, MeasureTheory.measure_union_neg_vadd, SubAddAction.orbitRel_of_subAdd, vadd_closedBall_zero, AddSubgroup.vadd_toLeftFun, AffineSubspace.wSameSide_smul_vsub_vadd_right, SubAddAction.mem_ofFixingAddSubgroup_iff, SubAddAction.ofFixingAddSubgroupEmpty_equivariantMap_bijective, HahnModule.one_smul', Convex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, injective, wbtw_smul_vadd_smul_vadd_of_nonneg_of_le, EuclideanGeometry.reflection_apply', Finset.centroid_pair, Set.disjoint_vadd_set_left, vadd_closure_orbit_subset, AffineSubspace.sSameSide_vadd_left_iff, vadd_coe_set, SubAddAction.inclusion.coe_eq, subset_interior_vadd, AddOreLocalization.oreSub_zero_vadd, instProperConstVAddOfContinuousConstVAdd, vadd_left_cancel_iff, Finset.addETransformLeft_snd, SubAddAction.ofFixingAddSubgroup_carrier, HahnSeries.SummableFamily.hsum_smul, continuous_const_vadd_iff, AffineSubspace.wSameSide_vadd_right_iff, Finset.addDysonETransform.vadd_finset_snd_subset_fst, upperClosure_vadd, IsAddFoelner.mean_vadd_eq_mean, minimalPeriod_eq_one_iff_fixedBy, Affine.Simplex.faceOppositeCentroid_eq_smul_vsub_vadd_point, Quotient.vadd_mk, derivWithin_comp_add_const, IsometryEquiv.constVAdd_apply, vadd_vsub_vadd_cancel_left, wbtw_or_wbtw_smul_vadd_of_nonneg, SubAddAction.vaddAssocClass, Bornology.isVonNBounded_vadd, ofQuotientStabilizer_mem_orbit, Finset.addETransformLeft_fst, vsub_vadd, SlashInvariantForm.vAdd_width_periodic, UpperHalfPlane.coe_vadd, Ideal.univ_eq_iUnion_image_add, AddSubgroup.mk_vadd, vadd_uniformity, toPermHom_apply_apply, Set.neg_vadd_set_distrib, vadd_vsub, isPreprimitive_of_is_two_pretransitive, AffineMap.homothety_def, Finsupp.smul_apply_addAction, instIsPretransitiveElemOrbit, MeasureTheory.measure_symmDiff_neg_vadd, wbtw_const_vadd_iff, AffineIsometryEquiv.map_vadd, IsFixedBlock.univ, AffineEquiv.vaddConst_apply, neg_vadd_eq_iff, support_translate, isMultiplyPreprimitive_iff, HomogeneousIdeal.irrelevant_eq_iSup, Set.mem_neg_vadd_set_iff, amenable_of_maxAddFoelner_neBot, AffineSubspace.vadd_mem_pointwise_vadd_iff, AddOreLocalization.vadd_zero_vadd, disjoint_image_image_iff, Finset.vadd_univ, Finset.centroid_pair_fin, Finset.vadd_stabilizer_of_no_doubling, AddOreLocalization.vadd_sub_zero, zsmul_add_period_vadd, Seminorm.vadd_ball, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.covolume_ne_top, IsAddFoelner.tendsto_meas_vadd_symmDiff, zero_leftAddCoset, set_mem_fixedBy_iff, Set.disjoint_vadd_set_right, UpperHalfPlane.modular_T_zpow_smul, vadd_right_injective, mem_stabilizer_finset, AddUnits.vadd_neg, Metric.vadd_eball, mem_stabilizer_set_iff_vadd_set_subset, SubAddAction.ofFixingAddSubgroup.append_right, AddSubgroup.vadd_apply_eq_vadd_apply_neg_vadd, hasFDerivWithinAt_comp_sub, derivWithin_comp_sub_const, EuclideanGeometry.dist_smul_vadd_eq_dist, collinear_iff_exists_forall_eq_smul_vadd, vaddCommClass_self, SubAddAction.ofFixingAddSubgroup_equivariantMap_injective, MeasureTheory.measure_preimage_vadd, AffineIsometryEquiv.coe_vaddConst', Set.vadd_set_symmDiff, uniformContinuous_vadd, wbtw_or_wbtw_smul_vadd_of_nonpos, AddOreLocalization.expand', ofFixingSubgroup.isMultiplyPreprimitive, SubAddAction.nat_card_ofStabilizer_add_zero_eq, IsCompact.closedBall_add, AddMonoidHom.transfer_def, IsMultiplyPreprimitive.isPreprimitive_ofFixingAddSubgroup, QuotientAction.inv_mul_mem, HomogeneousIdeal.irrelevant_eq_closure, IsPartition.of_orbits, Finset.vadd_mem_vadd_finset_iff, WithIdealFilter.mem_nhds_iff, orbit_addSubgroup_subset, AffineSpace.asymptoticNhds_eq_smul_vadd, QuotientAddGroup.eq_class_eq_leftCoset, FreeAddMonoid.of_vadd, SubAddAction.ofStabilizer_carrier, SubAddAction.disjoint_val_image, AddSubmonoid.instMeasurableVAdd, IsAddUnit.vadd_uniformity, MeasureTheory.measure_neg_vadd_union, Set.preimage_vadd, AddSubgroup.exists_leftTransversal_of_FiniteIndex, AddSubgroup.properlyDiscontinuousVAdd_of_tendsto_cofinite, AffineMap.homothety_add, orbit_addSubgroup_eq_rightCoset, wbtw_vadd_const_iff, Finset.card_vadd_inter, vadd_mem_nhds_vadd_iff, ZSpan.vadd_mem_fundamentalDomain, eq_neg_vadd_iff, differentiableWithinAt_comp_add_left, AffineSubspace.wOppSide_vadd_right_iff, AffineSubspace.sOppSide_smul_vsub_vadd_left, AddRightCancelMonoid.faithfulVAdd, MeasureTheory.MeasurePreserving.vaddInvariantMeasure_iterateAddAct, normal_iff_eq_addCosets, Finset.neg_vadd_mem_iff, Prod.snd_vadd, MeasureTheory.addFundamentalFrontier_vadd, Set.vadd_set_iInter, nsmul_mod_period_vadd, EuclideanGeometry.orthogonalProjection_apply, mem_aestabilizer, MeasureTheory.pairwise_disjoint_addFundamentalInterior, nsmul_period_add_vadd, derivWithin_comp_const_add, AffineSubspace.pointwise_vadd_span, mem_fixedPoints, convex_vadd, Filter.Tendsto.asymptoticNhds_vadd_const, AffineSubspace.setOf_sOppSide_eq_image2, AffineEquiv.map_vadd', subset_interior_vadd_right, bijective, AddActionHom.map_mem_fixedPoints, Finset.vadd_finset_subset_vadd_finset_iff, denseRange_vadd, SubAddAction.val_vadd_of_tower, Set.vadd_inter_nonempty_iff, isCancelVAdd_iff_eq_zero_of_vadd_eq, Finset.subset_vadd_finset_iff, SubAddAction.ofStabilizer.isMultiplyPretransitive, nndist_vadd_cancel_left, Set.iUnion_vadd_eq_setOf_exists, ThreeAPFree.vadd_set, IsAddUnit.neg_vadd, mem_fixedPoints_iff_card_orbit_eq_one, AffineSubspace.setOf_wSameSide_eq_image2, le_stabilizer_iff_vadd_le, vadd_mem_fixedBy_iff_mem_fixedBy, vadd_right_cancel_iff, orbit_vadd, AddUnits.continuousConstVAdd, MeasureTheory.addFundamentalInterior_vadd, MeasureTheory.innerRegular_map_vadd, iteratedFDerivWithin_comp_sub', AffineSubspace.sSameSide_smul_vsub_vadd_left, Finset.addConvolution_op_vadd_eq_addConvolution_add_neg, IsOpen.right_addCoset, IsAddUnit.vadd_bijective, mem_stabilizerAddSubmonoid_iff, IsAddUnit.measurable_const_vadd_iff, MeasureTheory.eventuallyConst_vadd_set_ae, vadd_ball'', fderivWithin_comp_add_right, mem_stabilizer_set, measurableSMulβ‚‚_iterateAddAct, IsBlock.univ, orbitRel.Quotient.orbit_eq_orbit_out, Metric.preimage_vadd_eball, faithfulVAdd_iff, Set.vadd_set_inter, IsOpen.vadd, SubAddAction.inclusion_injective, IsPreprimitive.mk', Finset.vadd_finset_sdiff, Set.subset_vadd_set_iff, punctured_nhds_vadd, MeasureTheory.measure_vadd_null, nndist_vadd_vadd_le, stabilizerEquivStabilizer_zero, IsClosed.right_addCoset, stabilizer_orbit_eq, IsClosed.left_addCoset, approxAddOrderOf.vadd_subset_of_coprime, AffineSubspace.wOppSide_vadd_left_iff, MeasureTheory.Measure.isAddHaarMeasure_map_vadd, instIsPretransitiveElemOrbit_1, StrictConvex.vadd, IterateAddAct.mk_vadd, isBlock_addSubgroup', Set.mem_vadd_set_iff_neg_vadd_mem, sub_ball, OpenPartialHomeomorph.unitBallBall_apply, AddUnits.instMeasurableConstVAdd, vadd_pi, eq_vadd_iff_vsub_eq, is_zero_pretransitive_iff, IsAddFoelner.amenable, totallyBounded_iff_subset_finite_iUnion_nhds_zero, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.vaddInvariantMeasure_quotient, leftAddCoset_mem_leftAddCoset, Affine.Simplex.ninePointCircle_center, orbitRel.Quotient.mem_addSubgroup_orbit_iff, AffineMap.lineMap_vadd, subsingleton_orbit_iff_mem_fixedPoints, IsOpen.dense_iUnion_vadd, wbtw_smul_vadd_smul_vadd_of_nonpos_of_le, isHomeomorph_vadd, ofQuotientStabilizer_vadd, Prod.fst_vadd, IsPreprimitive.of_prime_card, SubAddAction.stabilizer_of_subAdd, spectrum.vadd_eq, index_stabilizer, instIsCancelVAdd, instIsLeftCancelVAdd, MeasureTheory.vaddInvariantMeasure_tfae, Finset.addETransformRight_fst, isAddFoelner_iff, HahnSeries.SummableFamily.powerSeriesFamily_smul, isPreprimitive_fixingAddSubgroup_insert_iff, dist_vadd_vadd_le, Finset.card_vadd_inter_vadd, SlashInvariantForm.vAdd_apply_of_mem_strictPeriods, IsQuasiPreprimitive.toIsPretransitive, orbitRel.Quotient.orbit_mk, AddOreLocalization.oreSub_vadd_oreSub, toPerm_apply, isAddQuotientCoveringMap_iff, MeasureTheory.NullMeasurableSet.vadd, HahnSeries.SummableFamily.mul_eq_smul, isBlock_iff_vadd_eq_of_mem, fderivWithin_comp_sub, EuclideanGeometry.reflection_apply, isMultiplyPreprimitive_ofStabilizer, isBlock_subtypeVal, IsCompact.add_closedBall, vadd_set_stabilizer_subset, Set.finite_vadd_set, zsmul_mod_period_vadd, UpperHalfPlane.vadd_im, affineIndependent_vadd, SubAddAction.mem_ofFixingAddSubgroup_insert_iff, zsmul_vadd_eq_iff_period_dvd, ofQuotientStabilizer_mk, AffineMap.lineMap_vadd_lineMap, isCoatom_stabilizer_iff_preprimitive, UpperHalfPlane.modular_T_smul, EMetric.preimage_vadd_ball, vadd_mem_orbit_vadd, AffineSubspace.sOppSide_vadd_left_iff, QuotientAddGroup.orbit_mk_eq_vadd, Finset.dens_vadd_finset, closure_vadd, UpperHalfPlane.vadd_left_injective, sbtw_const_vadd_iff, isPreprimitive_of_fixingAddSubgroup_empty_iff, mem_orbit_symm, hasFDerivWithinAt_comp_add_left, SubAddAction.inclusion.toFun_eq_coe, Finset.neg_vadd_finset_distrib, IsBlock.orbit_of_normal, AddUnits.vaddCommClass', wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos, continuousOn_const_vadd_iff, orbit_vadd_subset, Set.vadd_set_pi, vadd_left_mem_affineSpan_pair, IsAddQuotientCoveringMap.toContinuousConstVAdd, signedDist_vadd_vadd, AffineMap.coe_homothety, isPretransitive_quotient, HahnModule.single_zero_smul_eq_smul, Set.powersetCard.coe_vadd, ContinuousAffineMap.vadd_apply, MeasurableSet.const_vadd, mem_stabilizer_finset_iff_vadd_finset_subset, Set.encard_vadd_set, EuclideanGeometry.angle_const_vadd, Equiv.pointReflection_apply, isLinearSet_iff_exists_fin_addMonoidHom, SubAddAction.not_mem_of_mem_ofFixingAddSubgroup, IsBlockSystem.of_normal, mem_fixingAddSubgroup_iff, isPretransitive_iff_base, AffineSubspace.sOppSide_smul_vsub_vadd_right, IsCompact.closedBall_sub, SubAddAction.map_ofFixingAddSubgroupUnion_def, AddActionHom.zeroEmbeddingMap_bijective, EMetric.preimage_vadd_closedBall

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”VAdd.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
toAddSemigroupAction
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”VAdd.vadd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
toAddSemigroupAction
β€”ext
zero_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
toAddSemigroupAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”

AddCommute

Theorems

NameKindAssumesProvesValidatesDepends On
vadd_left πŸ“–mathematicalAddCommuteHVAdd.hVAdd
instHVAdd
β€”symm
vadd_right
vadd_right πŸ“–mathematicalAddCommuteHVAdd.hVAdd
instHVAdd
β€”add_vadd_comm
vadd_add_assoc

AddMonoid

Definitions

NameCategoryTheorems
toAddAction πŸ“–CompOp
221 mathmath: ball_sub, SubAddAction.map_ofFixingAddSubgroupUnion_bijective, AddAction.stabilizer_addSubgroup_op, IsUpperSet.vadd, VAddCommClass.of_add_vadd_zero, AddOreLocalization.oreSub_add_oreSub, Convex.vadd, Finset.neg_op_vadd_finset_distrib, vadd_eq_self_of_preimage_zsmul_eq_self, SubAddAction.ofStabilizer.conjMap_comp, SubAddAction.ofFixingAddSubgroup_of_inclusion_injective, AddOreLocalization.cardinalMk_le, QuotientAddGroup.univ_eq_iUnion_vadd, AddConstMap.coe_addLeftHom_apply, AddOreLocalization.sub_eq_zero', SubAddAction.ofFixingAddSubgroup_of_singleton_bijective, approxAddOrderOf.vadd_eq_of_mul_dvd, IsLowerSet.vadd_subset, QuotientAddGroup.measurableVAdd, HahnSeries.SummableFamily.lsum_apply, threeAPFree_vadd_set, AddAction.map_stabilizer_le, isLinearSet_iff, Finset.vadd_addConvolution_eq_addConvolution_neg_add, IsOpen.left_addCoset, AddOreLocalization.sub_eq_zero, exists_disjoint_vadd_of_isCompact, Finset.op_vadd_stabilizer_of_no_doubling, SetLike.instVAddCommClassSubtypeMem_1, QuotientAddGroup.instContinuousVAdd, IsUniformAddGroup.to_uniformContinuousConstVAdd, IsLowerSet.vadd, SetLike.instVAddCommClassSubtypeMem_2, AddAction.isPreprimitive_ofFixingAddSubgroup_conj_iff, instIsOrderedVAddOfIsOrderedAddMonoid, SubAddAction.ofStabilizer.conjMap_comp_neg_apply, AddLocalization.mk_self, Set.OrdConnected.vadd, Set.neg_op_vadd_set_distrib, HomogeneousIdeal.toAddSubmonoid_irrelevant_le, AddOreLocalization.instVAddCommClass_1, AddAction.left_quotientAction, Set.vadd_sub_vadd_comm, SubAddAction.ofStabilizer.isPretransitive_iff, Function.Periodic.map_vadd_multiples, MeasureTheory.Measure.instVAddInvariantMeasureSubtypeMemAddSubmonoidOfIsAddLeftInvariant, SubAddAction.conjMap_ofFixingAddSubgroup_bijective, instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid, AddAction.stabilizer_add_self, AddAction.Regular.isPretransitive, AddOreLocalization.add_cancel, AddOreLocalization.numerator_isAddUnit, SubAddAction.conjMap_ofFixingAddSubgroup_coe_apply, Set.vadd_Icc, orbit_addSubgroup_eq_self_of_mem, IsSemilinearSet.vadd, AddSubgroup.isAddQuotientCoveringMap_of_comm, NonarchimedeanAddGroup.exists_openAddSubgroup_separating, SubAddAction.ofFixingAddSubgroup_of_eq_bijective, HahnSeries.SummableFamily.embDomain_succ_smul_powers, Finset.addDysonETransform_snd, Fin.partialSum_left_neg, HahnSeries.of_symm_smul_of_eq_mul, Topology.IsQuotientMap.isAddQuotientCoveringMap_of_addSubgroup, AddOreLocalization.add_sub_zero, VAddAssocClass.left, AddLocalization.mk_self_mk, AddOreLocalization.oreSub_add_char, AddOreLocalization.instVAddAssocClass_1, IsUpperSet.vadd_subset, SubAddAction.val_image_orbit, MeasureTheory.tendsto_measure_vadd_diff_isCompact_isClosed, HomogeneousIdeal.irrelevant_le, Set.vadd_graphOn_univ, AddOreLocalization.numeratorHom_surjective_of_finite, vadd_ball_zero, HahnModule.coeff_smul_order_add_order, Set.vadd_inter_nonempty_iff', IsApproximateAddSubgroup.two_nsmul_covByVAdd, Ideal.homogeneousHull_eq_iSup, SubAddAction.ofFixingAddSubgroup_insert_map_bijective, mem_leftAddCoset_iff, VAddAssocClass.of_vadd_zero_add, Finset.add_mem_vadd_finset_iff, isProperLinearSet_iff, Finset.vadd_finset_subsetSum_subset_subsetSum_insert, Finset.card_inter_vadd, AddOreLocalization.add_zero, instErgodicVAddOfIsAddLeftInvariant, Finset.addDysonETransform_fst, NormedAddGroup.to_isIsometricVAdd_left, AddOreLocalization.vadd_zero_oreSub_zero_vadd, vadd_closedBall'', mem_own_leftAddCoset, SubAddAction.ofFixingAddSubgroup_of_eq_apply, AddOreLocalization.vadd_cancel', AddOreLocalization.numeratorHom_apply, AddOreLocalization.add_vadd, translate_eq_domAddActMk_vadd, Set.exists_vadd_inter_vadd_subset_vadd_neg_add_inter_neg_add, vadd_mem_nhds_self, Function.Periodic.map_vadd_zmultiples, AddSubgroup.leftTransversals.vadd_diff_vadd, Set.vadd_graphOn, AddSubgroup.leftCoset_cover_const_iff_surjOn, IsModuleFiltration.mk_int, AddAction.op_vadd_set_stabilizer_subset, leftAddCoset_eq_iff, AddOreLocalization.oreSub_vadd_char, eq_addCosets_of_normal, AddOreLocalization.zero_vadd, MeasureTheory.eventually_nhds_zero_measure_vadd_diff_lt, SubAddAction.ofStabilizer.conjMap_bijective, SubAddAction.ofFixingAddSubgroup_insert_map_apply, AddLocalization.mk_zero, Finset.op_vadd_addConvolution_eq_addConvolution_vadd, SubAddAction.val_preimage_orbit, SubAddAction.image_inclusion, IsLinearSet.vadd, AddSubgroup.IsComplement.pairwiseDisjoint_vadd, ball_add, lowerClosure_vadd, IsCompact.sub_closedBall, SubAddAction.mem_orbit_subAdd_iff, Topology.IsQuotientMap.isAddQuotientCoveringMap_of_isDiscrete_ker_addMonoidHom, add_ball, orbit_addSubgroup_zero_eq_self, isLinearSet_iff_exists_fg_eq_vadd, QuotientAddGroup.instContinuousConstVAdd, AddOreLocalization.zero_add, QuotientAddGroup.orbit_eq_out_vadd, SetLike.GradedMul.toGradedSMul, Set.mem_vadd_set_neg, Finset.addETransformRight_snd, AddOreLocalization.universalAddHom_commutes, AddOreLocalization.add_assoc, vadd_closedBall_zero, SubAddAction.ofFixingAddSubgroupEmpty_equivariantMap_bijective, AddOreLocalization.add_cancel', AddAction.stabilizer_addSubgroup, vadd_coe_set, SubAddAction.inclusion.coe_eq, AddOreLocalization.oreSub_zero_vadd, AddOreLocalization.universalAddHom_apply, Finset.addETransformLeft_snd, HahnSeries.SummableFamily.hsum_smul, Finset.addDysonETransform.vadd_finset_snd_subset_fst, upperClosure_vadd, SubAddAction.ofStabilizer.neg_conjMap_comp_apply, AddLocalization.r_iff_oreEqv_r, AddOreLocalization.zero_sub_vadd, SubAddAction.vaddAssocClass, AddOreLocalization.eq_of_num_factor_eq, AddOreLocalization.oreSub_add_oreSub_comm, Ideal.univ_eq_iUnion_image_add, Set.neg_vadd_set_distrib, support_translate, AddAction.isMultiplyPreprimitive_iff, HomogeneousIdeal.irrelevant_eq_iSup, AddOreLocalization.vadd_zero_vadd, Finset.vadd_stabilizer_of_no_doubling, AddAction.stabilizer_image_coe_quotient, AddOreLocalization.vadd_sub_zero, AddOreLocalization.vadd_cancel, zero_leftAddCoset, AddOreLocalization.zero_sub_add, AddAction.stabilizer_finite, SubAddAction.ofFixingAddSubgroup_equivariantMap_injective, AddAction.add_stabilizer_self, IsCompact.closedBall_add, AddMonoidHom.transfer_def, AddAction.IsMultiplyPreprimitive.isPreprimitive_ofFixingAddSubgroup, HomogeneousIdeal.irrelevant_eq_closure, QuotientAddGroup.eq_class_eq_leftCoset, AddAction.IsBlock.subtype_val_preimage, AddSubgroup.exists_leftTransversal_of_FiniteIndex, AddSubgroup.properlyDiscontinuousVAdd_of_tendsto_cofinite, orbit_addSubgroup_eq_rightCoset, Finset.card_vadd_inter, AddOreLocalization.add_neg, AddRightCancelMonoid.faithfulVAdd, normal_iff_eq_addCosets, AddAction.stabilizer_subset_sub_right, SubAddAction.ofStabilizer.conjMap_comp_apply, Set.vadd_inter_nonempty_iff, ThreeAPFree.vadd_set, IsAddUnit.neg_vadd, IsApproximateAddSubgroup.nsmul_inter_nsmul_covByVAdd_sq_inter_sq, HahnModule.instIsTorsionFree, vadd_ball'', SubAddAction.inclusion_injective, IsClosed.left_addCoset, approxAddOrderOf.vadd_subset_of_coprime, sub_ball, totallyBounded_iff_subset_finite_iUnion_nhds_zero, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.vaddInvariantMeasure_quotient, leftAddCoset_mem_leftAddCoset, AddAction.ofQuotientStabilizer_vadd, spectrum.vadd_eq, instIsCancelVAdd, instIsLeftCancelVAdd, HahnSeries.SummableFamily.powerSeriesFamily_smul, AddAction.isPreprimitive_fixingAddSubgroup_insert_iff, Finset.card_vadd_inter_vadd, AddOreLocalization.oreSub_vadd_oreSub, HahnSeries.SummableFamily.mul_eq_smul, AddAction.isBlock_subtypeVal, IsCompact.add_closedBall, AddAction.vadd_set_stabilizer_subset, QuotientAddGroup.orbit_mk_eq_vadd, AddAction.isPreprimitive_of_fixingAddSubgroup_empty_iff, instProperVAddOfIsTopologicalAddGroup, SubAddAction.inclusion.toFun_eq_coe, Finset.neg_vadd_finset_distrib, AddAction.isPretransitive_quotient, isLinearSet_iff_exists_fin_addMonoidHom, AddAction.stabilizer_quotient, IsCompact.closedBall_sub, SubAddAction.ofStabilizer.isPretransitive_iff_of_conj, SubAddAction.map_ofFixingAddSubgroupUnion_def, SubAddAction.ofStabilizer.conjMap_apply

AddOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
vadd_eq_add_unop πŸ“–mathematicalβ€”HVAdd.hVAdd
AddOpposite
instHVAdd
Add.toVAddAddOpposite
unop
β€”β€”

AddSemigroup

Theorems

NameKindAssumesProvesValidatesDepends On
vaddAssocClass πŸ“–mathematicalβ€”VAddAssocClass
Add.toVAdd
toAdd
β€”add_assoc

AddSemigroupAction

Definitions

NameCategoryTheorems
toVAdd πŸ“–CompOp
870 mathmath: Set.ncard_vadd_set, AddAction.mem_stabilizer_set_iff_subset_vadd_set, ball_sub, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, AffineIsometryEquiv.pointReflection_apply, Metric.vadd_closedBall, AddSubmonoid.continuousVAdd, EuclideanGeometry.dist_smul_vadd_sq, SubAddAction.map_ofFixingAddSubgroupUnion_bijective, IsOpen.vadd_left, AddAction.isTopologicallyTransitive_iff_dense_iUnion_preimage, Equiv.coe_vaddConst, AddAction.IsTrivialBlock.vadd_iff, SubAddAction.notMem_val_image, AddSubgroup.vadd_opposite_image_add_preimage', AddAction.IsPreprimitive.of_isTrivialBlock_base, EuclideanGeometry.reflection_orthogonal_vadd, Equiv.coe_constVSub_symm, AddAction.orbit_eq_iff, fderivWithin_comp_add_left, rank_le_card_isVisible, AddAction.isPeriodicPt_vadd_iff, AffineSubspace.sSameSide_vadd_right_iff, AddSubgroup.vaddCommClass_left, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, IsOpen.iUnion_preimage_vadd, AffineSubspace.setOf_sSameSide_eq_image2, MeasureTheory.vadd_ae, IsUpperSet.vadd, VAddCommClass.of_add_vadd_zero, Homeomorph.vadd_symm_apply, AffineEquiv.constVAdd_apply, AddAction.nsmul_vadd_mod_minimalPeriod, sub_add_vsub_comm, isAddQuotientCoveringMap_iff_isCoveringMap_and, AddAction.mem_addSubgroup_orbit_iff, rightAddCoset_zero, AddAction.zsmul_period_add_vadd, nhds_vadd, AddAction.nonempty_orbit, Finset.vadd_finset_eq_univ, Convex.vadd, Finset.neg_op_vadd_finset_distrib, SetLike.vadd_of_tower_def, AddAction.mapsTo_vadd_orbit, vadd_eq_vadd_iff_neg_add_eq_vsub, vadd_vsub_assoc, AddAction.orbitRel_apply, vadd_mem_fixedPoints_of_normal, AddAction.IsPretransitive.of_vaddAssocClass, vadd_eq_self_of_preimage_zsmul_eq_self, AddAction.isTopologicallyTransitive_iff, SubAddAction.ofFixingAddSubgroup_of_inclusion_injective, rightAddCoset_mem_rightAddCoset, Affine.Simplex.centroid_eq_smul_sum_vsub_vadd, QuotientAddGroup.univ_eq_iUnion_vadd, Homeomorph.vaddConst_apply, Dense.vadd, derivWithin_comp_const_sub, Set.iUnion_neg_vadd, vadd_right_mem_affineSpan_pair, AddConstMap.coe_addLeftHom_apply, mem_const_vadd_affineSegment, AffineSubspace.wOppSide_smul_vsub_vadd_left, IsAddUnit.aemeasurable_const_vadd_iff, vsub_vadd_comm, SubAddAction.ofFixingAddSubgroup_of_singleton_bijective, Sbtw.vadd_const, AddCircle.isAddFundamentalDomain_of_ae_ball, AddAction.orbit.pairwiseDisjoint, iteratedFDerivWithin_comp_add_right', MeasureTheory.integral_vadd_eq_self, AddAction.Supports.vadd, UpperHalfPlane.isometry_real_vadd, approxAddOrderOf.vadd_eq_of_mul_dvd, Multiset.vadd_sum, AffineSubspace.vadd_mem_mk', Set.vadd_set_compl, MeasureTheory.mem_addFundamentalFrontier, EMetric.vadd_ball, AffineIsometryEquiv.coe_constVAdd, vadd_mem_spanPoints_of_mem_spanPoints_of_mem_vectorSpan, AddAction.stabilizer_vadd_eq_stabilizer_map_conj, IsLowerSet.vadd_subset, AddAction.pretransitive_iff_unique_quotient_of_nonempty, smul_vsub_rev_vadd_mem_affineSpan_pair, SubAddAction.mem_ofStabilizer_iff, tendsto_const_vadd_iff, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, QuotientAddGroup.measurableVAdd, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, Affine.Triangle.orthocenter_eq_smul_vsub_vadd_circumcenter, AddAction.Quotient.vadd_coe, EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint, threeAPFree_vadd_set, Finset.vadd_finset_univ, IsometryEquiv.constVSub_symm_apply, EuclideanGeometry.angle_vadd_const, isLinearSet_iff, AddAction.Quotient.coe_vadd_out, vadd_vadd, AddAction.isPretransitive_compHom, AddAction.continuousVAdd_compHom, FreeAddMonoid.vadd_def, AffineSubspace.sOppSide_vadd_right_iff, Finset.vadd_addConvolution_eq_addConvolution_neg_add, MeasureTheory.measure_neg_vadd_inter, AffineIndependent.vadd, collinear_iff_of_mem, IsOpen.left_addCoset, AddSubmonoid.nsmul_vadd_mem_closure_vadd, Set.vadd_set_vsub_vadd_set, exists_disjoint_vadd_of_isCompact, AffineMap.map_vadd', Set.vadd_set_sdiff, Finset.op_vadd_stabilizer_of_no_doubling, orbit_fixingAddSubgroup_compl_subset, SetLike.instVAddCommClassSubtypeMem_1, QuotientAddGroup.instContinuousVAdd, vsub_vadd_eq_vsub_sub, IsUniformAddGroup.to_uniformContinuousConstVAdd, IsLowerSet.vadd, EuclideanGeometry.orthogonalProjection_apply_mem, SetLike.instVAddCommClassSubtypeMem_2, AffineBasis.coe_vadd, AddAction.isPreprimitive_ofFixingAddSubgroup_conj_iff, instIsOrderedVAddOfIsOrderedAddMonoid, AddSubgroup.vaddCommClass_right, AddAction.orbitZMultiplesEquiv_symm_apply', AddAction.IsBlock.of_orbit, AddAction.IsQuasiPreprimitive.isPretransitive_of_normal, AddAction.orbitZMultiplesEquiv_symm_apply, Function.Embedding.vadd_apply, Finset.weightedVSubOfPoint_vadd, AffineSubspace.smul_vsub_vadd_mem, nndist_vadd_cancel_right, Convex.smul_vadd_mem_of_mem_nhds_of_mem_asymptoticCone, Set.vadd_set_pi_of_isAddUnit, AddAction.mem_stabilizer_iff, IsAddFoelner.tendsto_meas_vadd_symmDiff_vadd, Set.OrdConnected.vadd, Filter.vadd_tendsto_vadd_iff, sbtw_vadd_const_iff, IsAddUnit.preimage_vadd_setβ‚›β‚—, Set.neg_op_vadd_set_distrib, HomogeneousIdeal.toAddSubmonoid_irrelevant_le, IsAddQuotientCoveringMap.isCancelVAdd, vadd_vsub_eq_sub_vsub, iteratedFDerivWithin_comp_add_left, Set.vadd_sub_vadd_comm, Set.pairwise_disjoint_vadd_iff, SubAddAction.ofFixingAddSubgroup.isMultiplyPretransitive, SubAddAction.ofFixingAddSubgroup.isMultiplyPretransitive', AddAction.isBlock_iff_vadd_eq_of_nonempty, SubAddAction.ofStabilizer.isPretransitive_iff, UpperHalfPlane.vadd_re, affinity_unitClosedBall, AddAction.mem_orbit_vadd, IsAddUnit.vadd, vadd_eq_vadd_iff_sub_eq_vsub, AddAction.vadd_neg_mem_fixedBy_iff_mem_fixedBy, Function.Periodic.map_vadd_multiples, ContinuousAffineMap.vadd_toAffineMap, add_vadd, SubAddAction.stabilizer_of_subMul.addSubmonoid, MeasureTheory.Measure.instVAddInvariantMeasureSubtypeMemAddSubmonoidOfIsAddLeftInvariant, AddAction.IsPreprimitive.of_isTrivialBlock_of_notMem_fixedPoints, AddOreLocalization.oreSub_eq_iff, EuclideanGeometry.orthogonalProjection_apply', MeasureTheory.measure_vadd, AddAction.pretransitive_iff_subsingleton_quotient, Metric.preimage_vadd_ball, instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid, op_vadd_add, Finite.to_properlyDiscontinuousVAdd, AddAction.stabilizer_vadd_eq_right, AddAction.Regular.isPretransitive, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, AddAction.IsTopologicallyTransitive.exists_vadd_inter, wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg, Finset.card_vadd_finset, Set.powersetCard.isPretransitive_of_isMultiplyPretransitive', Metric.vadd_ball, dist_vadd_cancel_right, isAddFundamentalDomain_Ioc, Set.powersetCard.addActionHom_of_embedding_surjective, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, Set.vadd_mem_vadd_set_iff, Multiplicative.mulAction_isPretransitive, instIsLeftCancelVAdd_1, FreeAddMonoid.ofList_vadd, instErgodicVAddAddOppositeOfIsAddRightInvariant, Finset.vadd_finset_symmDiff, IsClosed.vadd_right_of_isCompact, Set.vadd_Icc, AffineSpace.asymptoticNhds_vadd_pure, measurableVAdd_iterateAddAct, Finset.vadd_finset_inter, vadd_eq_iff_eq_neg_vadd, IsAddFoelner.mean_vadd_eq_mean_vadd, orbit_addSubgroup_eq_self_of_mem, IsSemilinearSet.vadd, vadd_zero_vadd, convexHull_vadd, AddAction.isPretransitive_of_is_two_pretransitive, sub_smul_slope_vadd, vadd_singleton_mem_nhds_of_sigmaCompact, NonarchimedeanAddGroup.exists_openAddSubgroup_separating, AddOreLocalization.vadd_oreSub, AffineSubspace.setOf_wOppSide_eq_image2, MeasureTheory.vadd_set_ae_le, IsCompact.exists_finite_cover_vadd, MeasureTheory.measure_sdiff_neg_vadd, nndist_vadd_left, Metric.preimage_vadd_closedEBall, SubAddAction.ofFixingAddSubgroup_of_eq_bijective, HahnSeries.SummableFamily.embDomain_succ_smul_powers, isOpenMap_vadd, AddUnits.vaddAssocClass', Finset.addDysonETransform_snd, AddAction.vadd_fixedBy, Finset.vadd_finset_subset_iff, MeasureTheory.measure_neg_vadd_symmDiff, AffineSubspace.coe_pointwise_vadd, AffineEquiv.map_vadd, vadd_vsub_vadd_cancel_right, AffineSubspace.wSameSide_vadd_left_iff, Fin.partialSum_left_neg, SubAddAction.vaddAssocClass', HahnSeries.of_symm_smul_of_eq_mul, mem_vadd_const_affineSegment, AddAction.image_inter_image_iff, VAddAssocClass.left, AddTorsor.vadd_vsub', vadd_mem_affineSpan_of_mem_affineSpan_of_mem_vectorSpan, continuousAt_const_vadd_iff, AffineMap.vadd_linear, isClosedMap_vadd, IsAddQuotientCoveringMap.apply_eq_iff_mem_orbit, IsAddUnit.vadd_tendsto_vadd_iff, AddAction.Quotient.mk_vadd_out, measurable_const_vadd_iff, IsAddUnit.preimage_vadd_set, IsUpperSet.vadd_subset, ProperVAdd.isProperMap_vadd_pair, Filter.Tendsto.const_vadd_asymptoticNhds, SubAddAction.val_image_orbit, AddAction.zmultiplesQuotientStabilizerEquiv_symm_apply, SubAddAction.SMulMemClass.coe_subtype, mem_fixingAddSubmonoid_iff, arrowAddAction_vadd, smul_vsub_vadd_mem_affineSpan_pair, IsOpen.dense_iUnion_preimage_vadd, MeasureTheory.tendsto_measure_vadd_diff_isCompact_isClosed, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, Finset.affineCombination_eq_weightedVSubOfPoint_vadd_of_sum_eq_one, HomogeneousIdeal.irrelevant_le, AddUnits.val_vadd, Set.vadd_univ, AddGroup.preimage_vadd_set, AffineMap.vadd_lineMap, op_vadd_coe_set, Set.vadd_graphOn_univ, affinity_unitBall, isSimplyConnected_vadd_set_iff, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, Set.vadd_set_eq_univ, AddAction.zeroEmbedding_isPretransitive_iff, AddAction.surjective, AmpleSet.vadd, AddAction.IsTrivialBlock.vadd, Set.vadd_set_subset_vadd_set_iff, Metric.vadd_sphere, Metric.preimage_vadd_sphere, StrictConvex.affinity, MeasureTheory.mem_addFundamentalInterior, op_vadd_op_vadd, iteratedFDerivWithin_comp_sub, AddAction.orbit.coe_vadd, differentiableWithinAt_comp_sub, vadd_ball_zero, EuclideanGeometry.orthogonalProjection_vadd_eq_self, HahnModule.coeff_smul_order_add_order, HahnModule.instIsScalarTowerHahnSeries_1, AddAction.isPretransitive_iff_orbit_eq_univ, AddAction.nsmul_vadd_eq_iff_minimalPeriod_dvd, Set.vadd_inter_nonempty_iff', IsClosed.vadd, AddSubgroup.instMeasurableVAdd, IsTopologicalAddTorsor.toContinuousVAdd, AddAction.mem_orbit_self, AffineIsometryEquiv.coe_vaddConst, Set.preimage_vadd_neg, Ideal.homogeneousHull_eq_iSup, MeasureTheory.measure_vadd_eq_zero_iff, SubAddAction.ofFixingAddSubgroup_insert_map_bijective, interior_vadd, mem_leftAddCoset_iff, VAddAssocClass.of_vadd_zero_add, signedDist_vadd_left_swap, mem_rightAddCoset_iff, VAddAssocClass.to₂₃₄, AddAction.orbitRel.Quotient.mapsTo_vadd_orbit, Finset.add_mem_vadd_finset_iff, AddAction.vadd_orbit_eq_orbit_vadd, EuclideanGeometry.reflection_apply_of_mem, isProperLinearSet_iff, AddAction.vadd_orbit, AddAction.minimalPeriod_eq_card, AddSubgroup.continuousVAdd, AddActionHom.map_mem_fixedBy, AddGroup.preimage_vadd_setβ‚›β‚—, Finset.vadd_finset_subsetSum_subset_subsetSum_insert, AddAction.zsmul_vadd_eq_iff_minimalPeriod_dvd, Finset.card_inter_vadd, SubAddAction.fixingAddSubgroup_vadd_eq_fixingAddSubgroup_map_conj, vadd_neg_vadd, MeasureTheory.measure_neg_vadd_sdiff, Seminorm.vadd_closedBall, instErgodicVAddOfIsAddLeftInvariant, LipschitzWith.vadd, Finset.addDysonETransform_fst, DilationEquiv.smulTorsor_apply, Set.vadd_set_univ, AffineSubspace.vadd_mem_iff_mem_of_mem_direction, NormedAddGroup.to_isIsometricVAdd_left, signedDist_vadd_right, neg_vadd_vadd, IsClosed.vadd_left_of_isCompact, NormedAddGroup.to_isIsometricVAdd_right, AffineMap.map_vadd, ZSpan.isAddFundamentalDomain', affineSegment_const_vadd_image, Sbtw.const_vadd, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, vadd_closedBall'', Finset.mem_neg_vadd_finset_iff, AddSubgroup.vadd_leftQuotientEquiv, AddAction.isInvariantBlock_iff_isFixedBlock, AffineMap.lineMap_vadd_apply, AddAction.compHom_vadd_def, Metric.preimage_vadd_closedBall, measurableEmbedding_const_vadd, AddSubgroup.instFaithfulVAddSubtypeMem, HahnModule.SMulCommClass, mem_own_leftAddCoset, SubAddAction.nat_card_ofStabilizer_eq, AddAction.vadd_orbit_subset, SubAddAction.ofFixingAddSubgroup_of_eq_apply, Finite.finite_addAction_orbit, continuousWithinAt_const_vadd_iff, AffineSubspace.coe_vadd, AddOreLocalization.vadd_cancel', Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, List.vadd_sum, AddAction.IsBlock.of_subset, vadd_segment, AddSubgroup.instVAddAssocClassSubtypeMem, Set.powersetCard.faithfulVAdd, AddAction.isBlock_iff_vadd_eq_or_disjoint, MeasureTheory.vadd_mem_ae, dist_vadd_left, ContinuousAffineMap.map_vadd, iteratedFDerivWithin_comp_add_right, vadd_mem_nhds_vadd, Finset.affineCombination_apply, AddAction.orbit_addSubmonoid_subset, ProperVAdd.toContinuousVAdd, AddAction.coe_aestabilizer, AddAction.mem_stabilizer_finset', AffineSpace.vadd_asymptoticNhds, zero_vadd_eq_id, midpoint_vadd_midpoint, Set.vadd_set_subset_iff_subset_neg_vadd_set, AffineSubspace.wSameSide_smul_vsub_vadd_left, AddAction.IsFixedBlock.orbit, AddAction.IsPreprimitive.exists_mem_vadd_and_notMem_vadd, translate_eq_domAddActMk_vadd, AddOreLocalization.expand, AmpleSet.vadd_iff, IsOpen.iUnion_vadd, Set.exists_vadd_inter_vadd_subset_vadd_neg_add_inter_neg_add, AddAction.IsTrivialBlock.isBlock, SubAddAction.isCentralVAdd, vadd_mem_nhds_self, ZSpan.exist_unique_vadd_mem_fundamentalDomain, AddAction.mem_stabilizer_set', AddAction.nsmul_vadd_eq_iff_period_dvd, Function.Periodic.map_vadd_zmultiples, dist_vadd_right, AddAction.IsMinimal.dense_orbit, AddSubgroup.leftTransversals.vadd_diff_vadd, linearIndependent_set_iff_affineIndependent_vadd_union_singleton, AffineMap.lineMap_apply, Affine.Simplex.faceOppositeCentroid_eq_sum_vsub_vadd, differentiableWithinAt_comp_add_right, AddSubgroup.instMeasurableConstVAdd, SubAddAction.vadd_mem_iff', Finset.weightedVSubOfPoint_vadd_eq_of_sum_eq_one, Set.vadd_graphOn, AddSubgroup.leftCoset_cover_const_iff_surjOn, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, IsAddUnit.vadd_left_cancel, Set.powersetCard.addActionHom_singleton_bijective, rightAddCoset_eq_iff, StarConvex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, EuclideanGeometry.inversion_def, AddAction.vadd_zsmul_movedBy_eq_of_addCommute, AddAction.toFun_apply, SubAddAction.ofStabilizer.isMultiplyPretransitive_iff, IsModuleFiltration.mk_int, AddAction.zsmul_vadd_mod_minimalPeriod, comp_vadd_left, AddAction.nsmul_period_vadd, ZSpan.isAddFundamentalDomain, properVAdd_iff, AddUnits.vaddAssocClass'_left, AddAction.orbitRel.Quotient.orbit.coe_vadd, Affine.Simplex.centroid_eq_smul_vsub_vadd_point, AddAction.period_eq_minimalPeriod, ergodic_vadd_of_denseRange_nsmul, Set.infinite_vadd_set, nndist_vadd_right, AddTorsor.vsub_vadd', AddAction.op_vadd_set_stabilizer_subset, leftAddCoset_eq_iff, vadd_iterate, zero_vadd, AffineSubspace.mem_affineSpan_insert_iff, AddOreLocalization.oreSub_vadd_char, Affine.Simplex.mongePoint_eq_smul_vsub_vadd_circumcenter, AddAction.isBlock_top, HahnModule.coeff_single_zero_smul, eq_addCosets_of_normal, AddAction.addSubgroup_vadd_def, ProperVAdd.isProperMap_vadd_pair_set, MeasureTheory.eventually_nhds_zero_measure_vadd_diff_lt, mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd, mem_affineSpan_iff_exists, AddAction.nsmul_add_period_vadd, MeasureTheory.vadd_set_ae_eq, AddMonoidHom.preimage_vadd_setβ‚›β‚—, Metric.vadd_closedEBall, aemeasurable_const_vadd_iff, Set.natCard_vadd_set, AddAction.IsBlock.orbit, Measurable.measurableSMulβ‚‚_iterateAddAct, AddAction.orbitRel.Quotient.mem_addSubgroup_orbit_iff', AddAction.isBlock_iff_disjoint_vadd_of_ne, preimage_vadd_setβ‚›β‚—_of_isAddUnit_isAddUnit, Set.powersetCard.coe_addActionHom_of_embedding, Finset.weightedVSub_vadd, AffineEquiv.ofLinearEquiv_apply, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, AddAction.vadd_zsmul_fixedBy_eq_of_addCommute, AffineEquiv.pointReflection_apply, AddAction.period_eq_zero_iff, Homeomorph.vadd_apply, AffineSubspace.wOppSide_smul_vsub_vadd_right, isOpenMap_vadd_of_sigmaCompact, isCancelVAdd_iff_stabilizer_eq_bot, AddUnits.measurableVAdd, AddAction.mem_fixedBy, AffineMap.coe_lineMap, Equiv.coe_constVAdd, AffineSubspace.vadd_mem_of_mem_direction, Set.op_vadd_inter_nonempty_iff, AffineEquiv.coe_constVSub_symm, Finset.op_vadd_addConvolution_eq_addConvolution_vadd, SubAddAction.val_preimage_orbit, vectorSpan_vadd, MeasureTheory.Subgroup.vaddInvariantMeasure, Bornology.IsVonNBounded.vadd, vadd_openSegment, AddAction.toPerm_symm_apply, ext_iff, SubAddAction.image_inclusion, IsLinearSet.vadd, MeasureTheory.vaddInvariantMeasure_iterateAddAct, AddUnits.continuousVAdd, vadd_vsub_vadd_comm, ergodic_vadd_of_denseRange_zsmul, AddAction.orbitEquivQuotientStabilizer_symm_apply, AddSubgroup.IsComplement.pairwiseDisjoint_vadd, AffineMap.vadd_apply, SubAddAction.mem_fixingAddSubgroup_insert_iff, AddSubgroup.vadd_def, Set.disjoint_vadd_set, AffineSubspace.sSameSide_smul_vsub_vadd_right, ball_add, lowerClosure_vadd, IsCompact.sub_closedBall, SubAddAction.mem_orbit_subAdd_iff, AddAction.is_two_pretransitive_iff, Function.Embedding.coe_vadd, properVAdd_iff_continuousVAdd_ultrafilter_tendsto, MeasurableEquiv.vadd_apply, EuclideanGeometry.dist_sq_smul_orthogonal_vadd_smul_orthogonal_vadd, AddAction.dense_orbit, signedDist_vadd_right_swap, Wbtw.vadd_const, AddAction.card_orbit_mul_card_stabilizer_eq_card_addGroup, Wbtw.const_vadd, EMetric.vadd_closedBall, AddAction.BlockMem.coe_top, Finsupp.mem_vaddAntidiagonal_of_addGroup, SubAddAction.compl_def, AddAction.orbit.eq_or_disjoint, add_ball, AffineMap.homothety_apply, dist_vadd_cancel_left, hasFDerivWithinAt_comp_add_right, AddAction.isMultiplyPreprimitive_succ_iff_ofStabilizer, ContinuousAffineMap.vadd_contLinear, orbit_addSubgroup_zero_eq_self, IsometryEquiv.vaddConst_apply, isLinearSet_iff_exists_fg_eq_vadd, slope_vadd_const, QuotientAddGroup.instContinuousConstVAdd, affineSegment_vadd_const_image, SubAddAction.ofStabilizer.snoc_castSucc, Set.Infinite.vadd_set, AddAction.IsPretransitive.of_compHom, AddAction.orbit_eq_univ, vadd_iterate_apply, AffineIsometry.map_vadd, AddAction.isTopologicallyTransitive_iff_dense_iUnion, UpperHalfPlane.vadd_right_cancel_iff, AddAction.quotient_preimage_image_eq_union_add, NormedAddTorsor.to_isIsIsometricVAdd, AddAction.instIsPretransitiveOfSubsingleton, Prod.mk_vadd_mk, Cardinal.mk_vadd_set, AddAction.vadd_mem_of_set_mem_fixedBy, SetLike.mk_vadd_of_tower_mk, signedDist_vadd_left, AddAction.mem_stabilizer_finset_iff_subset_vadd_finset, AddAction.isSimpleOrder_blockMem_iff_isPreprimitive, QuotientAddGroup.orbit_eq_out_vadd, Finset.weightedVSub_vadd_affineCombination, SetLike.GradedMul.toGradedSMul, iteratedFDerivWithin_comp_add_left', Set.mem_vadd_set_neg, AddSubmonoid.instMeasurableConstVAdd, MeasureTheory.measure_inter_neg_vadd, SubAddAction.ENat_card_ofStabilizer_add_zero_eq, Finset.addETransformRight_snd, mem_own_rightAddCoset, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, AddMonoidHom.vaddZeroHom_apply, AddAction.isBlock_addSubgroup, SubAddAction.fixingAddSubgroup_of_insert, AffineSubspace.vadd_mem_iff_mem_direction, AddAction.ext_iff, AddAction.BlockMem.coe_bot, AddAction.zero_vadd, edist_vadd_vadd_le, AddAction.minimalPeriod_pos, AddAction.is_zero_preprimitive_iff, IsOpen.exists_vadd_mem, ZLattice.isAddFundamentalDomain, MeasureTheory.measure_union_neg_vadd, SubAddAction.orbitRel_of_subAdd, vadd_closedBall_zero, AddSubgroup.vadd_toLeftFun, AffineSubspace.wSameSide_smul_vsub_vadd_right, SubAddAction.mem_ofFixingAddSubgroup_iff, SubAddAction.ofFixingAddSubgroupEmpty_equivariantMap_bijective, HahnModule.one_smul', Convex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, AddAction.injective, wbtw_smul_vadd_smul_vadd_of_nonneg_of_le, EuclideanGeometry.reflection_apply', Finset.centroid_pair, Set.disjoint_vadd_set_left, vadd_closure_orbit_subset, AffineSubspace.sSameSide_vadd_left_iff, vadd_coe_set, SubAddAction.inclusion.coe_eq, subset_interior_vadd, AddOreLocalization.oreSub_zero_vadd, instProperConstVAddOfContinuousConstVAdd, vadd_left_cancel_iff, Finset.addETransformLeft_snd, SubAddAction.ofFixingAddSubgroup_carrier, HahnSeries.SummableFamily.hsum_smul, continuous_const_vadd_iff, AffineSubspace.wSameSide_vadd_right_iff, Finset.addDysonETransform.vadd_finset_snd_subset_fst, upperClosure_vadd, IsAddFoelner.mean_vadd_eq_mean, AddAction.minimalPeriod_eq_one_iff_fixedBy, Affine.Simplex.faceOppositeCentroid_eq_smul_vsub_vadd_point, AddAction.Quotient.vadd_mk, derivWithin_comp_add_const, IsometryEquiv.constVAdd_apply, vadd_vsub_vadd_cancel_left, wbtw_or_wbtw_smul_vadd_of_nonneg, SubAddAction.vaddAssocClass, Bornology.isVonNBounded_vadd, AddAction.ofQuotientStabilizer_mem_orbit, Finset.addETransformLeft_fst, vsub_vadd, SlashInvariantForm.vAdd_width_periodic, UpperHalfPlane.coe_vadd, Ideal.univ_eq_iUnion_image_add, AddSubgroup.mk_vadd, vadd_uniformity, AddAction.toPermHom_apply_apply, Set.neg_vadd_set_distrib, vadd_vsub, AddAction.isPreprimitive_of_is_two_pretransitive, AffineMap.homothety_def, Finsupp.smul_apply_addAction, AddAction.instIsPretransitiveElemOrbit, MeasureTheory.measure_symmDiff_neg_vadd, wbtw_const_vadd_iff, AffineIsometryEquiv.map_vadd, AddAction.IsFixedBlock.univ, AffineEquiv.vaddConst_apply, neg_vadd_eq_iff, support_translate, AddAction.isMultiplyPreprimitive_iff, HomogeneousIdeal.irrelevant_eq_iSup, Set.mem_neg_vadd_set_iff, amenable_of_maxAddFoelner_neBot, AffineSubspace.vadd_mem_pointwise_vadd_iff, AddOreLocalization.vadd_zero_vadd, AddAction.disjoint_image_image_iff, Finset.vadd_univ, Finset.centroid_pair_fin, Finset.vadd_stabilizer_of_no_doubling, AddOreLocalization.vadd_sub_zero, AddAction.zsmul_add_period_vadd, Seminorm.vadd_ball, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.covolume_ne_top, IsAddFoelner.tendsto_meas_vadd_symmDiff, zero_leftAddCoset, AddAction.set_mem_fixedBy_iff, Set.disjoint_vadd_set_right, UpperHalfPlane.modular_T_zpow_smul, vadd_right_injective, AddAction.mem_stabilizer_finset, AddUnits.vadd_neg, Metric.vadd_eball, AddAction.mem_stabilizer_set_iff_vadd_set_subset, SubAddAction.ofFixingAddSubgroup.append_right, AddSubgroup.vadd_apply_eq_vadd_apply_neg_vadd, hasFDerivWithinAt_comp_sub, derivWithin_comp_sub_const, EuclideanGeometry.dist_smul_vadd_eq_dist, collinear_iff_exists_forall_eq_smul_vadd, vaddCommClass_self, SubAddAction.ofFixingAddSubgroup_equivariantMap_injective, MeasureTheory.measure_preimage_vadd, AffineIsometryEquiv.coe_vaddConst', Set.vadd_set_symmDiff, uniformContinuous_vadd, wbtw_or_wbtw_smul_vadd_of_nonpos, AddOreLocalization.expand', AddAction.ofFixingSubgroup.isMultiplyPreprimitive, SubAddAction.nat_card_ofStabilizer_add_zero_eq, IsCompact.closedBall_add, AddMonoidHom.transfer_def, AddAction.IsMultiplyPreprimitive.isPreprimitive_ofFixingAddSubgroup, AddAction.QuotientAction.inv_mul_mem, HomogeneousIdeal.irrelevant_eq_closure, AddAction.IsPartition.of_orbits, Finset.vadd_mem_vadd_finset_iff, WithIdealFilter.mem_nhds_iff, AddAction.orbit_addSubgroup_subset, AffineSpace.asymptoticNhds_eq_smul_vadd, QuotientAddGroup.eq_class_eq_leftCoset, FreeAddMonoid.of_vadd, SubAddAction.ofStabilizer_carrier, SubAddAction.disjoint_val_image, AddSubmonoid.instMeasurableVAdd, IsAddUnit.vadd_uniformity, MeasureTheory.measure_neg_vadd_union, Set.preimage_vadd, AddSubgroup.exists_leftTransversal_of_FiniteIndex, AddSubgroup.properlyDiscontinuousVAdd_of_tendsto_cofinite, AffineMap.homothety_add, orbit_addSubgroup_eq_rightCoset, wbtw_vadd_const_iff, Finset.card_vadd_inter, vadd_mem_nhds_vadd_iff, ZSpan.vadd_mem_fundamentalDomain, eq_neg_vadd_iff, differentiableWithinAt_comp_add_left, AffineSubspace.wOppSide_vadd_right_iff, AffineSubspace.sOppSide_smul_vsub_vadd_left, AddRightCancelMonoid.faithfulVAdd, MeasureTheory.MeasurePreserving.vaddInvariantMeasure_iterateAddAct, normal_iff_eq_addCosets, Finset.neg_vadd_mem_iff, Prod.snd_vadd, MeasureTheory.addFundamentalFrontier_vadd, Set.vadd_set_iInter, AddAction.nsmul_mod_period_vadd, EuclideanGeometry.orthogonalProjection_apply, AddAction.mem_aestabilizer, MeasureTheory.pairwise_disjoint_addFundamentalInterior, AddAction.nsmul_period_add_vadd, derivWithin_comp_const_add, AffineSubspace.pointwise_vadd_span, AddAction.mem_fixedPoints, convex_vadd, Filter.Tendsto.asymptoticNhds_vadd_const, AffineSubspace.setOf_sOppSide_eq_image2, AffineEquiv.map_vadd', subset_interior_vadd_right, AddAction.bijective, AddActionHom.map_mem_fixedPoints, Finset.vadd_finset_subset_vadd_finset_iff, denseRange_vadd, SubAddAction.val_vadd_of_tower, Set.vadd_inter_nonempty_iff, isCancelVAdd_iff_eq_zero_of_vadd_eq, Finset.subset_vadd_finset_iff, SubAddAction.ofStabilizer.isMultiplyPretransitive, nndist_vadd_cancel_left, Set.iUnion_vadd_eq_setOf_exists, ThreeAPFree.vadd_set, IsAddUnit.neg_vadd, AddAction.mem_fixedPoints_iff_card_orbit_eq_one, AffineSubspace.setOf_wSameSide_eq_image2, AddAction.le_stabilizer_iff_vadd_le, AddAction.vadd_mem_fixedBy_iff_mem_fixedBy, vadd_right_cancel_iff, AddAction.orbit_vadd, AddUnits.continuousConstVAdd, MeasureTheory.addFundamentalInterior_vadd, MeasureTheory.innerRegular_map_vadd, iteratedFDerivWithin_comp_sub', AffineSubspace.sSameSide_smul_vsub_vadd_left, Finset.addConvolution_op_vadd_eq_addConvolution_add_neg, IsOpen.right_addCoset, IsAddUnit.vadd_bijective, AddAction.mem_stabilizerAddSubmonoid_iff, IsAddUnit.measurable_const_vadd_iff, MeasureTheory.eventuallyConst_vadd_set_ae, vadd_ball'', fderivWithin_comp_add_right, AddAction.mem_stabilizer_set, measurableSMulβ‚‚_iterateAddAct, AddAction.IsBlock.univ, AddAction.orbitRel.Quotient.orbit_eq_orbit_out, Metric.preimage_vadd_eball, faithfulVAdd_iff, Set.vadd_set_inter, IsOpen.vadd, SubAddAction.inclusion_injective, AddAction.IsPreprimitive.mk', Finset.vadd_finset_sdiff, Set.subset_vadd_set_iff, punctured_nhds_vadd, MeasureTheory.measure_vadd_null, nndist_vadd_vadd_le, AddAction.stabilizerEquivStabilizer_zero, IsClosed.right_addCoset, AddAction.stabilizer_orbit_eq, IsClosed.left_addCoset, approxAddOrderOf.vadd_subset_of_coprime, AffineSubspace.wOppSide_vadd_left_iff, MeasureTheory.Measure.isAddHaarMeasure_map_vadd, AddAction.instIsPretransitiveElemOrbit_1, StrictConvex.vadd, IterateAddAct.mk_vadd, AddAction.isBlock_addSubgroup', Set.mem_vadd_set_iff_neg_vadd_mem, sub_ball, OpenPartialHomeomorph.unitBallBall_apply, AddUnits.instMeasurableConstVAdd, vadd_pi, eq_vadd_iff_vsub_eq, AddAction.is_zero_pretransitive_iff, IsAddFoelner.amenable, totallyBounded_iff_subset_finite_iUnion_nhds_zero, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.vaddInvariantMeasure_quotient, leftAddCoset_mem_leftAddCoset, Affine.Simplex.ninePointCircle_center, AddAction.orbitRel.Quotient.mem_addSubgroup_orbit_iff, AffineMap.lineMap_vadd, AddAction.subsingleton_orbit_iff_mem_fixedPoints, IsOpen.dense_iUnion_vadd, wbtw_smul_vadd_smul_vadd_of_nonpos_of_le, isHomeomorph_vadd, AddAction.ofQuotientStabilizer_vadd, Prod.fst_vadd, AddAction.IsPreprimitive.of_prime_card, SubAddAction.stabilizer_of_subAdd, spectrum.vadd_eq, AddAction.index_stabilizer, instIsCancelVAdd, instIsLeftCancelVAdd, MeasureTheory.vaddInvariantMeasure_tfae, Finset.addETransformRight_fst, isAddFoelner_iff, HahnSeries.SummableFamily.powerSeriesFamily_smul, AddAction.isPreprimitive_fixingAddSubgroup_insert_iff, dist_vadd_vadd_le, Finset.card_vadd_inter_vadd, SlashInvariantForm.vAdd_apply_of_mem_strictPeriods, AddAction.IsQuasiPreprimitive.toIsPretransitive, AddAction.orbitRel.Quotient.orbit_mk, AddOreLocalization.oreSub_vadd_oreSub, AddAction.toPerm_apply, isAddQuotientCoveringMap_iff, MeasureTheory.NullMeasurableSet.vadd, HahnSeries.SummableFamily.mul_eq_smul, AddAction.isBlock_iff_vadd_eq_of_mem, fderivWithin_comp_sub, EuclideanGeometry.reflection_apply, AddAction.isMultiplyPreprimitive_ofStabilizer, AddAction.isBlock_subtypeVal, IsCompact.add_closedBall, AddAction.vadd_set_stabilizer_subset, Set.finite_vadd_set, AddAction.zsmul_mod_period_vadd, UpperHalfPlane.vadd_im, affineIndependent_vadd, SubAddAction.mem_ofFixingAddSubgroup_insert_iff, AddAction.zsmul_vadd_eq_iff_period_dvd, AddAction.ofQuotientStabilizer_mk, AffineMap.lineMap_vadd_lineMap, AddAction.isCoatom_stabilizer_iff_preprimitive, UpperHalfPlane.modular_T_smul, EMetric.preimage_vadd_ball, AddAction.vadd_mem_orbit_vadd, AffineSubspace.sOppSide_vadd_left_iff, QuotientAddGroup.orbit_mk_eq_vadd, Finset.dens_vadd_finset, closure_vadd, UpperHalfPlane.vadd_left_injective, sbtw_const_vadd_iff, AddAction.isPreprimitive_of_fixingAddSubgroup_empty_iff, AddAction.mem_orbit_symm, hasFDerivWithinAt_comp_add_left, SubAddAction.inclusion.toFun_eq_coe, Finset.neg_vadd_finset_distrib, AddAction.IsBlock.orbit_of_normal, AddUnits.vaddCommClass', wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos, continuousOn_const_vadd_iff, AddAction.orbit_vadd_subset, Set.vadd_set_pi, vadd_left_mem_affineSpan_pair, IsAddQuotientCoveringMap.toContinuousConstVAdd, signedDist_vadd_vadd, AffineMap.coe_homothety, AddAction.isPretransitive_quotient, HahnModule.single_zero_smul_eq_smul, Set.powersetCard.coe_vadd, ContinuousAffineMap.vadd_apply, MeasurableSet.const_vadd, AddAction.mem_stabilizer_finset_iff_vadd_finset_subset, Set.encard_vadd_set, EuclideanGeometry.angle_const_vadd, Equiv.pointReflection_apply, isLinearSet_iff_exists_fin_addMonoidHom, SubAddAction.not_mem_of_mem_ofFixingAddSubgroup, AddAction.IsBlockSystem.of_normal, mem_fixingAddSubgroup_iff, AddAction.isPretransitive_iff_base, AffineSubspace.sOppSide_smul_vsub_vadd_right, IsCompact.closedBall_sub, SubAddAction.map_ofFixingAddSubgroupUnion_def, AddActionHom.zeroEmbeddingMap_bijective, EMetric.preimage_vadd_closedBall

Theorems

NameKindAssumesProvesValidatesDepends On
add_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
toVAdd
AddSemigroup.toAdd
β€”β€”
ext πŸ“–β€”VAdd.vadd
toVAdd
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”VAdd.vadd
toVAdd
β€”ext

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
smul_left πŸ“–β€”Commuteβ€”β€”symm
smul_right
smul_left_iff πŸ“–mathematicalβ€”Commute
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”symm_iff
smul_right_iff
smul_right πŸ“–β€”Commuteβ€”β€”mul_smul_comm
smul_mul_assoc
smul_right_iff πŸ“–mathematicalβ€”Commute
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”smul_right
inv_smul_smul

Function.Injective

Definitions

NameCategoryTheorems
addAction πŸ“–CompOpβ€”
mulAction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
smulCommClass πŸ“–mathematicalβ€”SMulCommClassβ€”SMulCommClass.smul_comm
vaddCommClass πŸ“–mathematicalHVAdd.hVAdd
instHVAdd
VAddCommClassβ€”VAddCommClass.vadd_comm

Function.Surjective

Definitions

NameCategoryTheorems
addAction πŸ“–CompOpβ€”
mulAction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
smulCommClass πŸ“–mathematicalβ€”SMulCommClassβ€”forall
SMulCommClass.smul_comm
vaddCommClass πŸ“–mathematicalHVAdd.hVAdd
instHVAdd
VAddCommClassβ€”forall
VAddCommClass.vadd_comm

IsCancelSMul

Theorems

NameKindAssumesProvesValidatesDepends On
eq_one_of_smul πŸ“–mathematicalSemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”right_cancel
one_smul
left_cancel πŸ“–β€”β€”β€”β€”IsLeftCancelSMul.left_cancel'
toIsLeftCancelSMul
right_cancel πŸ“–β€”β€”β€”β€”right_cancel'
right_cancel' πŸ“–β€”β€”β€”β€”β€”
toIsLeftCancelSMul πŸ“–mathematicalβ€”IsLeftCancelSMulβ€”β€”

IsCancelVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_vadd πŸ“–mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”right_cancel
zero_vadd
left_cancel πŸ“–β€”HVAdd.hVAdd
instHVAdd
β€”β€”IsLeftCancelVAdd.left_cancel'
toIsLeftCancelVAdd
right_cancel πŸ“–β€”HVAdd.hVAdd
instHVAdd
β€”β€”right_cancel'
right_cancel' πŸ“–β€”HVAdd.hVAdd
instHVAdd
β€”β€”β€”
toIsLeftCancelVAdd πŸ“–mathematicalβ€”IsLeftCancelVAddβ€”β€”

IsCentralScalar

Theorems

NameKindAssumesProvesValidatesDepends On
op_smul_eq_smul πŸ“–mathematicalβ€”MulOpposite
MulOpposite.op
β€”β€”
unop_smul_eq_smul πŸ“–mathematicalβ€”MulOpposite.unop
MulOpposite
β€”op_smul_eq_smul

IsCentralVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
op_vadd_eq_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
AddOpposite
instHVAdd
AddOpposite.op
β€”β€”
unop_vadd_eq_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddOpposite.unop
AddOpposite
β€”op_vadd_eq_vadd

IsLeftCancelSMul

Theorems

NameKindAssumesProvesValidatesDepends On
left_cancel πŸ“–β€”β€”β€”β€”left_cancel'
left_cancel' πŸ“–β€”β€”β€”β€”β€”

IsLeftCancelVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
left_cancel πŸ“–β€”HVAdd.hVAdd
instHVAdd
β€”β€”left_cancel'
left_cancel' πŸ“–β€”HVAdd.hVAdd
instHVAdd
β€”β€”β€”

IsScalarTower

Theorems

NameKindAssumesProvesValidatesDepends On
left πŸ“–mathematicalβ€”IsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”SemigroupAction.mul_smul
of_commMonoid πŸ“–mathematicalβ€”IsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
CommMonoid.toMonoid
Monoid.toMulAction
β€”smul_eq_mul
mul_comm
SMulCommClass.smul_comm
of_smul_one_mul πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
IsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”smul_eq_mul
mul_assoc
op_left πŸ“–mathematicalβ€”IsScalarTower
MulOpposite
β€”IsCentralScalar.unop_smul_eq_smul
smul_assoc
op_right πŸ“–mathematicalβ€”IsScalarTower
MulOpposite
MulOpposite.instSMul
β€”IsCentralScalar.unop_smul_eq_smul
MulOpposite.unop_smul
smul_assoc
smul_assoc πŸ“–β€”β€”β€”β€”β€”
to₁₂₄ πŸ“–mathematicalβ€”IsScalarTowerβ€”smul_one_smul
smul_assoc
to₁₃₄ πŸ“–mathematicalβ€”IsScalarTowerβ€”smul_one_smul
smul_assoc
to₂₃₄ πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”smul_one_smul
smul_assoc

LibraryNote

Definitions

NameCategoryTheorems
bundled_maps_over_different_rings πŸ“–CompOpβ€”

Monoid

Definitions

NameCategoryTheorems
toMulAction πŸ“–CompOp
325 mathmath: SubMulAction.ofStabilizer.isPretransitive_iff_of_conj, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_fromCoset, instIsOrderedCancelSMulOfIsOrderedCancelMonoid, MulAction.isPreprimitive_of_fixingSubgroup_empty_iff, SubMulAction.ofStabilizer.conjMap_comp_apply, OreLocalization.numeratorHom_surjective_of_finite, SubMulAction.ofFixingSubgroup_insert_map_apply, IsLowerSet.smul, mul_ball, Representation.ofMulActionSelfAsModuleEquiv_symm_apply, Rep.diagonalSuccIsoFree_inv_hom_single, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeCompl, SubMulAction.ofFixingSubgroup_equivariantMap_injective, FractionRing.instIsScalarTower, Set.smul_graphOn_univ, LocalizedModule.restrictScalars_map_eq, SubMulAction.ofStabilizer.conjMap_comp_inv_apply, OreLocalization.mul_smul, Finset.inv_smul_finset_distrib, Finset.doubling_lt_three_halves, Set.mem_smul_set_inv, IsCompact.closedBall_mul, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, mem_leftCoset_iff, DoubleCoset.doubleCoset_union_leftCoset, MulAction.stabilizer_mul_self, SubMulAction.ofFixingSubgroup_of_inclusion_injective, RatFunc.mk_smul, Subgroup.center.smulCommClass_right, Complex.isQuotientCoveringMap_npow, Localization.liftOn_zero, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_infinity, instIsScalarTowerAtPrimeFractionRing_1, OreLocalization.smul_cancel', Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_infinity, SubMulAction.ofStabilizer.inv_conjMap_comp_apply, one_leftCoset, Finset.inv_op_smul_finset_distrib, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, SubMulAction.map_ofFixingSubgroupUnion_def, Finset.mulDysonETransform_snd, HomogeneousLocalization.val_zero, MulAction.op_smul_set_stabilizer_subset, HomogeneousLocalization.val_one, MulAction.mul_stabilizer_self, orbit_subgroup_eq_self_of_mem, instIsPushoutFractionRingPolynomial_1, OreLocalization.oreDiv_mul_oreDiv, Rep.diagonalSuccIsoFree_inv_hom_single_single, Set.exists_smul_inter_smul_subset_smul_inv_mul_inter_inv_mul, Complex.UnitDisc.instIsScalarTower_circle_circle, Finset.smul_inv_mul_eq_inv_mul_opSMul, IsUnit.inv_smul, OreLocalization.one_smul, Localization.algHom_ext_iff, Representation.ofMulAction_self_smul_eq_mul, LocalizedModule.equivTensorProduct_symm_apply_tmul_one, SubMulAction.ofStabilizer.isPretransitive_iff, OreLocalization.eq_of_num_factor_eq, HomogeneousLocalization.val_smul, Topology.IsQuotientMap.isQuotientCoveringMap_of_subgroup, OreLocalization.mul_div_one, coeSubmodule_differentIdeal_fractionRing, Ideal.Fiber.lift_residueField_surjective, OreLocalization.smul_cancel, OreLocalization.numeratorHom_inj, smul_ball'', Finset.mul_mem_smul_finset_iff, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, smul_closedBall_one, IsScalarTower.of_smul_one_mul, Set.OrdConnected.smul, Subgroup.leftCoset_cover_const_iff_surjOn, Algebra.IsSmoothAt.exists_isStandardEtale_mvPolynomial, OreLocalization.mul_assoc, instProperSMulOfIsTopologicalGroup, NonarchimedeanGroup.exists_openSubgroup_separating, ball_mul, OreLocalization.div_eq_one, IsCompact.div_closedBall, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, QuotientGroup.eq_class_eq_leftCoset, StarMul.toStarModule, IsLocalization.instIsScalarTowerLocalizationAtPrime, RatFunc.ofFractionRing_one, MonoidHom.transfer_def, approxOrderOf.smul_subset_of_coprime, MulAction.isPreprimitive_ofFixingSubgroup_conj_iff, smul_coe_set, QuotientGroup.univ_eq_iUnion_smul, RatFunc.smul_eq_C_mul, leftCoset_eq_iff, Circle.isQuotientCoveringMap_zpow, RatFunc.ofFractionRing_zero, RightCancelMonoid.faithfulSMul, Subgroup.leftTransversals.smul_diff_smul, GrpCat.SurjectiveOfEpiAuxs.fromCoset_eq_of_mem_range, isQuotientCoveringMap_npow, Ideal.ResidueField.liftₐ_comp_toAlgHom, SubMulAction.inclusion.toFun_eq_coe, div_ball, smul_eq_self_of_preimage_zpow_eq_self, OreLocalization.numeratorRingHom_apply, Action.FintypeCat.toEndHom_apply, IsCompact.mul_closedBall, classifyingSpaceUniversalCover_map, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, MulAction.stabilizer_subgroup, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_auxβ‚‚, Localization.instNoZeroDivisors, GradedMonoid.smulCommClass_right, IsCompact.closedBall_div, ball_div, instIsCancelSMul, ModuleCat.instIsScalarTowerLocalizationCarrierLocalizedModule, SubMulAction.inclusion_injective, OreLocalization.mul_cancel, map_equiv_traceDual, MulAction.smul_set_stabilizer_subset, OreLocalization.mul_one, HomogeneousLocalization.instIsScalarTowerSubtypeMemOfNatLocalization, SubMulAction.mem_orbit_subMul_iff, SubMulAction.val_image_orbit, MulAction.isPretransitive_quotient, RatFunc.smul_eq_C_smul, smul_mem_nhds_self, normal_iff_eq_cosets, MulAction.stabilizer_subset_div_right, IsOpen.leftCoset, MulAction.isPreprimitive_fixingSubgroup_insert_iff, QuotientGroup.measurableSMul, Subgroup.exists_leftTransversal_of_FiniteIndex, MeasureTheory.QuotientMeasureEqMeasurePreimage.smulInvariantMeasure_quotient, RatFunc.instIsScalarTowerOfIsDomainOfPolynomial, SubMulAction.ofFixingSubgroup_of_eq_apply, MulAction.stabilizer_subgroup_op, IsClosed.leftCoset, RatFunc.one_def, RatFunc.div_smul, Representation.ofMulActionSelfAsModuleEquiv_apply, Fin.partialProd_left_inv, instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient, RatFunc.faithfulSMul, Finset.card_smul_inter, IsScalarTower.left, Subgroup.quotientEquivSigmaZMod_apply, Subgroup.IsComplement.pairwiseDisjoint_smul, Action.FintypeCat.quotientToEndHom_mk, RatFunc.instIsScalarTowerPolynomial, Finset.mulDysonETransform_fst, QuotientGroup.orbit_eq_out_smul, OreLocalization.one_div_mul, IsLowerSet.smul_subset, Finset.mulDysonETransform.smul_finset_snd_subset_fst, OreLocalization.smul_one_oreDiv_one_smul, smul_closedBall'', Circle.isQuotientCoveringMap_npow, isQuotientCoveringMap_zpow, Localization.mk_list_sum, MulAction.stabilizer_quotient, Topology.IsQuotientMap.isQuotientCoveringMap_of_isDiscrete_ker_monoidHom, RatFunc.zero_def, MulAction.IsMultiplyPreprimitive.isPreprimitive_ofFixingSubgroup, Subgroup.center.smulCommClass_left, OreLocalization.mul_cancel', OreLocalization.numeratorHom_apply, MulAction.isMultiplyPreprimitive_iff, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset', Localization.mk_self, MulAction.map_stabilizer_le, Set.inv_smul_set_distrib, Subgroup.transferTransversal_apply', QuotientGroup.instContinuousSMul, AlgebraicIndependent.liftAlgHom_comp_reprField, OreLocalization.universalMulHom_apply, OreLocalization.mul_inv, MulActionHom.toQuotient_apply, Submonoid.center.smulCommClass_left, instIsReducedLocalization, instIsLeftCancelSMul, Equiv.Perm.isPretransitive_of_isCycle_mem, OreLocalization.instIsScalarTower_1, leftCoset_mem_leftCoset, RatFunc.instIsScalarTowerOfPolynomial, Module.FinitePresentation.exists_lift_equiv_of_isLocalizedModule, SubMulAction.ofStabilizer.conjMap_comp, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, OreLocalization.div_eq_one', Ideal.ResidueField.algHom_ext_iff, Localization.instSMulCommClassOfIsScalarTower, OreLocalization.oreDiv_mul_char, Submonoid.center.smulCommClass_right, IsUpperSet.smul, WittVector.StandardOneDimIsocrystal.frobenius_apply, Finset.op_smul_convolution_eq_convolution_smul, Localization.mk_one, MulAction.stabilizer_image_coe_quotient, SMulCommClass.of_mul_smul_one, IsLocalization.instIsScalarTowerAtPrimeFractionRing, mem_own_leftCoset, Localization.AtPrime.instIsScalarTower, Localization.smul_mk, MeasureTheory.eventually_nhds_one_measure_smul_diff_lt, Finset.smul_convolution_eq_convolution_inv_mul, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset, CategoryTheory.PreGaloisCategory.has_decomp_quotients, SetLike.GradedMul.toGradedSMul, Finset.card_inter_smul, Action.FintypeCat.quotientToQuotientOfLE_hom_mk, HomogeneousLocalization.Away.eventually_smul_mem, Set.smul_inter_nonempty_iff, orbit_subgroup_eq_rightCoset, OreLocalization.oreDiv_smul_oreDiv, instIsPushoutFractionRingPolynomial, OreLocalization.smul_add, SubMulAction.inclusion.coe_eq, Subgroup.isQuotientCoveringMap_of_comm, Set.inv_op_smul_set_distrib, Set.smul_div_smul_comm, Localization.instFaithfulSMulAtPrimeOfNoZeroDivisors, SubMulAction.ofFixingSubgroup_of_singleton_bijective, Subgroup.normalCore_eq_ker, OreLocalization.oreDiv_mul_oreDiv_comm, threeGPFree_smul_set, SubMulAction.ofFixingSubgroupEmpty_equivariantMap_bijective, ModularGroup.T_S_rel, Set.smul_inter_nonempty_iff', IsRightCancelMulZero.faithfulSMul, IsApproximateSubgroup.sq_covBySMul, OreLocalization.instSMulCommClass_1, MeasureTheory.Measure.instSMulInvariantMeasureSubtypeMemSubmonoidOfIsMulLeftInvariant, RatFunc.mk_zero, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset_nin_range, OreLocalization.numerator_isUnit, SubMulAction.map_ofFixingSubgroupUnion_bijective, HomogeneousLocalization.den_smul_val, Subgroup.properlyDiscontinuousSMul_of_tendsto_cofinite, Finset.card_smul_inter_smul, Rep.standardComplex.forgetβ‚‚ToModuleCatHomotopyEquiv_f_0_eq, SubMulAction.ofFixingSubgroup_of_eq_bijective, QuotientGroup.orbit_mk_eq_smul, IsScalarTower.of_commMonoid, QuotientGroup.instContinuousConstSMul, eq_cosets_of_normal, Subgroup.transferFunction_apply, Algebra.Generators.compLocalizationAwayAlgHom_relation_eq_zero, GradedMonoid.isScalarTower_right, OreLocalization.universalMulHom_commutes, Finset.mulETransformRight_snd, MulAction.stabilizer_finite, SubMulAction.val_preimage_orbit, SubMulAction.IsPreprimitive.isPreprimitive_ofFixingSubgroup_inter, NormedGroup.to_isIsometricSMul_left, OreLocalization.smul_div_one, Finset.op_smul_stabilizer_of_no_doubling, RatFunc.isScalarTower_liftAlgebra, totallyBounded_iff_subset_finite_iUnion_nhds_one, Set.smul_Icc, lowerClosure_smul, FractionRing.isScalarTower_liftAlgebra, Subgroup.transferTransversal_apply'', OreLocalization.one_mul, MeasureTheory.tendsto_measure_smul_diff_isCompact_isClosed, isScalarTower_iff_smulCommClass_of_commMonoid, instIsScalarTowerLocalizationAlgebraMapSubmonoid, OreLocalization.one_div_smul, MulAction.IsBlock.subtype_val_preimage, OreLocalization.oreDiv_smul_char, ThreeGPFree.smul_set, IsApproximateSubgroup.pow_inter_pow_covBySMul_sq_inter_sq, SubMulAction.ofStabilizer.conjMap_bijective, TrivSqZeroExt.inl_mul_eq_smul, SubMulAction.isScalarTower, Subgroup.quotientEquivSigmaZMod_symm_apply, CategoryTheory.PreGaloisCategory.exists_lift_of_quotient_openSubgroup, Localization.r_iff_oreEqv_r, MulAction.left_quotientAction, smul_ball_one, orbit_subgroup_one_eq_self, IsUniformGroup.to_uniformContinuousConstSMul, exists_disjoint_smul_of_isCompact, Units.smul_eq_mul, GrpCat.SurjectiveOfEpiAuxs.g_apply_fromCoset, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_fromCoset, Localization.mk_self_mk, FractionRing.instFaithfulSMul, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, OreLocalization.cardinalMk_le, SetLike.instSMulCommClassSubtypeMem_1, OreLocalization.smul_zero, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeCompl_1, Localization.mk_zero, SubMulAction.ofStabilizer.conjMap_apply, SetLike.instIsScalarTowerSubtypeMem, Set.smul_graphOn, approxOrderOf.smul_eq_of_mul_dvd, OreLocalization.smul_one_smul, MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot, MulAction.ofQuotientStabilizer_smul, OreLocalization.universalHom_commutes, SubMulAction.image_inclusion, Finset.mulETransformLeft_snd, instIsOrderedSMulOfIsOrderedMonoid, MulAction.Regular.isPretransitive, SubMulAction.ofFixingSubgroup_insert_map_bijective, OreLocalization.oreDiv_one_smul, SubMulAction.conjMap_ofFixingSubgroup_bijective, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_fromCoset', upperClosure_smul, Finset.smul_stabilizer_of_no_doubling, Finset.smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves, IsUpperSet.smul_subset, SetLike.instSMulCommClassSubtypeMem_2, SubMulAction.IsPretransitive.isPretransitive_ofFixingSubgroup_inter, instIsPushoutFractionRingMvPolynomial_1, classifyingSpaceUniversalCover_obj, Action.FintypeCat.toEndHom_trivial_of_mem, SubMulAction.conjMap_ofFixingSubgroup_coe_apply, MulAction.isBlock_subtypeVal, QuotientGroup.out_conj_pow_minimalPeriod_mem, instIsPushoutFractionRingMvPolynomial, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero, instErgodicSMulOfIsMulLeftInvariant

Mul

Definitions

NameCategoryTheorems
toSMul πŸ“–CompOpβ€”
toSMulMulOpposite πŸ“–CompOp
40 mathmath: MeasureTheory.Measure.IsMulRightInvariant.toSMulInvariantMeasure_op, Multiplicative.isIsIsometricVAdd'', Finset.mul_subset_iff_right, LefttCancelMonoid.to_faithfulSMul_mulOpposite, Finset.op_smul_finset_mul_eq_mul_smul_finset, IsScalarTower.opposite_mid, Finset.op_smul_finset_subset_mul, LeftCancelMonoid.to_faithfulSMul_mulOpposite, op_smul_eq_mul, Matrix.vecMulVec_update, Semigroup.opposite_smulCommClass', measurableSMul_opposite_of_mul, MulAction.Regular.isPretransitive_mulOpposite, mem_rightCoset, Set.op_smul_set_mul_eq_mul_smul_set, Prod.isIsometricSMul'', Matrix.map_op_smul', SMulCommClass.opposite_mid, Matrix.vecMulVec_smul', Set.iUnion_op_smul_set, Set.mul_pair, measurableSMulβ‚‚_opposite_of_mul, Set.mul_subset_iff_right, Semigroup.opposite_smulCommClass, isRightRegular_iff, Set.image_op_smul, Set.op_smul_set_subset_mul, Set.image_op_smul_distrib, MulOpposite.smul_eq_mul_unop, Finset.biUnion_op_smul_finset, IsRightRegular.isSMulRegular, leftCoset_rightCoset, Matrix.conjTranspose_smul_self, instFaithfulSMulMulOppositeOfIsLeftCancelMul, rightCoset_assoc, Finset.mul_singleton, ContinuousMul.to_continuousSMul_op, instFaithfulSMulMulOpposite, CommSemigroup.isCentralScalar, Matrix.col_vecMulVec

MulAction

Definitions

NameCategoryTheorems
toSemigroupAction πŸ“–CompOp
1769 mathmath: AddSubmonoid.pointwise_smul_le_pointwise_smul_iffβ‚€, IsPreprimitive.of_isTrivialBlock_of_notMem_fixedPoints, Matrix.l2_opNorm_toEuclideanCLM, Quotient.coe_smul_out, units_inv_smul, LeftPreLieAlgebra.toSMulCommClass, compHom_smul_def, DoubleCoset.doubleCoset_union_rightCoset, DomMulAct.smul_monoidHom_apply, aestronglyMeasurable_const_smul_iff, continuousSMul_sphere_ball, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_fromCoset, pow_add_period_smul, IsSMulRegular.of_mul_eq_one, instIsOrderedCancelSMulOfIsOrderedCancelMonoid, isPreprimitive_of_fixingSubgroup_empty_iff, isHomeomorph_smulβ‚€, Homeomorph.smulOfNeZero_symm_apply, Subgroup.smul_mem_pointwise_smul_iffβ‚€, CategoryTheory.PreGaloisCategory.mulAction_def, interior_smulβ‚€, ModularGroup.SLOnGLPos_smul_apply, dot_self_cross, Subgroup.pointwise_smul_le_pointwise_smul_iff, Matrix.toLin'_symm, MeasureTheory.smulInvariantMeasure_iterateMulAct, NormedGroup.to_isIsometricSMul_right, LinearMap.toMatrixAlgEquiv'_mul, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, IsUnit.isSMulRegular, properSMul_iff, Monoid.PushoutI.NormalWord.base_smul_def, IsLowerSet.smul, smul_pow', IsTrivialBlock.smul, Set.smul_set_symmDiff, instProperConstSMulOfContinuousConstSMul, Finset.smul_finset_subset_smul_finset_iff, mul_ball, MeasurableEquiv.smul_apply, Subgroup.equivSMul_apply_coe, Finset.smul_finset_sdiff, AffineMap.coe_smul, Metric.smul_ball, FreeMonoid.ofList_smul, ErgodicSMul.of_aestabilizer, isTopologicallyTransitive_iff_dense_iUnion_preimage, MeasureTheory.measure_sdiff_inv_smul, MeasurableEquiv.coe_smulβ‚€, IsClosed.smul_of_ne_zero, Subgroup.coe_pointwise_smul, Mathlib.Tactic.Module.NF.eval_algebraMap, NonUnitalCStarAlgebra.toStarModule, Finset.inv_smul_mem_iff, IsBlock.of_subset, HNNExtension.NormalWord.prod_group_smul, Subring.pointwise_smul_def, Complex.UnitDisc.instIsScalarTower_circle, AddSubgroup.zero_smul, TrivSqZeroExt.lift_inlAlgHom_inrHom, MulSemiringAction.toRingHom_apply, Polynomial.Gal.smul_def, nonempty_orbit, Matrix.toLinearMapRight'_mul, Equiv.Perm.smul_def, Filter.smul_tendsto_smul_iffβ‚€, MonoidHom.preimage_smul_setβ‚›β‚—, Rep.diagonalSuccIsoFree_inv_hom_single, mem_own_rightCoset, continuousSMul_sphere_sphere, Equiv.Perm.Basis.toCentralizer_equivariant, punctured_nhds_smul, support_comp_inv_smulβ‚€, Matrix.spectrum_toEuclideanLin, Matrix.iSup_eigenspace_toLin'_diagonal_eq_top, SubMulAction.ofStabilizer_carrier, Matrix.cstar_nnnorm_def, Submonoid.smul_mem_pointwise_smul_iffβ‚€, MeasureTheory.Subgroup.smulInvariantMeasure, LinearMap.mapMatrixLinear_apply, Filter.mem_absorbing, smul_mem_nhds_smulβ‚€, SubMulAction.ofFixingSubgroup_equivariantMap_injective, Matrix.toLinearMapβ‚‚'_comp, Sylow.pointwise_smul_def, kroneckerTMulAlgEquiv_symm_single_tmul, smul_zpow, UpperHalfPlane.re_smul, Subgroup.pointwise_smul_subset_iff, Action.ofMulAction_apply, RelIso.smul_def, OrderIso.smulRight_apply, Set.smul_graphOn_univ, Function.Embedding.coe_smul, OnePoint.isBoundedAt_iff_exists_SL2Z, alternatingGroup.isPreprimitive_of_three_le_card, SubMulAction.fixingSubgroup_smul_eq_fixingSubgroup_map_conj, Ideal.coe_smul_primesOver_mk_eq_map_galRestrict, isPretransitive_iff_orbit_eq_univ, Function.Embedding.smul_apply, LocalizedModule.restrictScalars_map_eq, Subgroup.mem_pointwise_smul_iff_inv_smul_memβ‚€, MeasureTheory.addHaarScalarFactor_smul_inv_eq_distribHaarChar, HNNExtension.NormalWord.group_smul_toList, Subring.instSMulCommClassSubtypeMemCenter, set_mem_fixedBy_iff, CategoryTheory.FintypeCat.Action.pretransitive_of_isConnected, Subgroup.subset_pointwise_smul_iff, OreLocalization.oreDiv_eq_iff, inv_smul_smulβ‚€, Units.isSMulRegular, Module.Ray.neg_units_smul, Set.infinite_smul_set, IsCusp.smul_of_mem, Finset.inv_smul_finset_distrib, AddSubgroup.smul_mem_pointwise_smul_iff, isQuotientCoveringMap_iff, Finset.doubling_lt_three_halves, Set.mem_smul_set_inv, smulMulHom_apply, Subgroup.exists_smul_eq, CongruenceSubgroup.exists_Gamma_le_conj', UpperHalfPlane.tendsto_smul_atImInfty, Set.powersetCard.isPretransitive, NumberField.mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, ofQuotientStabilizer_mem_orbit, Subgroup.conj_smul_subgroupOf, IsCompact.closedBall_mul, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Supports.smul, inv_smul_eq_iff, QuotSMulTop.equivTensorQuot_naturality, MeasureTheory.pairwise_disjoint_fundamentalInterior, IsClosed.smul_left_of_isCompact, AddSubgroup.mem_inv_pointwise_smul_iff, Complex.UnitDisc.instSMulCommClass_closedBall_circle, Units.smul_coe, CongruenceSubgroup.conjGL_coe, Dense.smul, Module.Basis.groupSMul_span_eq_top, mem_leftCoset_iff, cross_cross, Complex.UnitDisc.instSMulCommClass_closedBall_left, Subsemiring.mem_smul_pointwise_iff_exists, Matrix.spectrum_toLpLin, EMetric.smul_ball, Submodule.top_eq_ofList_cons_smul_iff, UpperHalfPlane.im_smul_eq_div_normSq, AddSubgroup.mem_inertia, OreLocalization.nsmul_eq_nsmul, UpperHalfPlane.specialLinearGroup_apply, smul_mem_orbit_smul, Set.smul_set_inter, instSMulCommClass_sphere_sphere_sphere, Sylow.coe_smul, NumberField.InfinitePlace.exists_smul_eq_of_comap_eq, DoubleCoset.doubleCoset_union_leftCoset, AddSubmonoid.le_pointwise_smul_iff, MeasureTheory.Measure.domSMul_apply, isClosedMap_smul_of_ne_zero, Equiv.Perm.exists_mem_stabilizer_smul_eq, IsGaloisGroup.mulEquivAlgEquiv_apply_symm_apply, Module.FinitePresentation.exists_notMem_bijective, Set.mem_inv_smul_set_iffβ‚€, Set.finite_smul_set, ContinuousAlternatingMap.piLIE_apply_apply, Set.preimage_smul_invβ‚€, Subsemiring.smul_mem_pointwise_smul_iff, SubMulAction.ofFixingSubgroup_of_inclusion_injective, ENNReal.smul_def, cross_self, mem_aestabilizer, Set.smul_set_interβ‚€, Subgroup.center.smulCommClass_right, quotient_out_smul_fixedPoints, Set.smul_set_subset_smul_set_iffβ‚€, ContinuousMultilinearMap.piLinearEquiv_symm_apply, MulDistribMulAction.toMulEquiv_apply, Submonoid.smul_mem_pointwise_smul, Equidecomp.restr_refl_symm, Module.Ray.units_smul_of_neg, Matrix.intrinsicStar_toLin', RelEmbedding.smul_def, InnerProductSpace.smul_left, zpow_smul_mod_minimalPeriod, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar_inv, IsQuasiPreprimitive.isPretransitive_of_normal, MeasureTheory.mem_fundamentalInterior, Finset.smul_finset_inter, MeasureTheory.mem_fundamentalFrontier, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_infinity, QuotientAction.inv_mul_mem, Finset.smul_finset_univ, ModularGroup.one_lt_normSq_T_zpow_smul, QuadraticMap.toMatrix'_comp, Set.powersetCard.mem_mulActionHom_compl, OnePoint.smul_infty_eq_self_iff, HNNExtension.NormalWord.t_smul_eq_unitsSMul, SimpleGraph.card_connectedComponent_eq_finrank_ker_toLin'_lapMatrix, isPreprimitive_of_is_two_pretransitive, SubMulAction.subset_coe_pow, Finset.subset_smul_finset_iff, cfcβ‚™Hom_nnreal_eq_restrict, OreLocalization.smul_cancel', unitary.smul_mem_of_mem, isBlock_iff_smul_eq_of_mem, SubMulAction.nat_card_ofStabilizer_add_one_eq, groupCohomology.isMulCoboundary₁_of_mem_coboundaries₁, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, absorbent_univ, mulSupport_comp_inv_smul, cfcβ‚™_map_pi, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_infinity, Representation.ofMulAction_apply, RightPreLieAlgebra.toIsScalarTower, hasDerivWithinAt_pi, LinearMap.spectrum_toMatrix', Real.smul_map_diagonal_volume_pi, Submonoid.pointwise_smul_le_pointwise_smul_iffβ‚€, AlgHom.mulLeftRightMatrix.inv_comp, Submonoid.mem_smul_pointwise_iff_exists, one_leftCoset, KaehlerDifferential.quotKerTotalEquiv_symm_comp_D, Unitary.smul_mem, QuotSMulTop.equivTensorQuot_naturality_mk, dot_cross_self, MeasureTheory.fundamentalFrontier_smul, Subring.mem_pointwise_smul_iff_inv_smul_mem, Matrix.toLpLin_mul_same, mem_orbit_smul, jacobiTheta_T_sq_smul, Submonoid.instMeasurableSMul, DistribMulAction.smul_add, orbit_subgroup_subset, Subalgebra.coe_pointwise_smul, smul_zpow_movedBy_eq_of_commute, SlashInvariantForm.quotientFunc_smul, IsUnit.tendsto_const_smul_iff, Equiv.swap_smul_involutive, NonUnitalSubalgebra.prod_inf_prod, CStarMatrix.toCLM_injective, Submonoid.pointwise_smul_le_pointwise_smul_iff, ModularGroup.sl_moeb, is_one_preprimitive_iff, MeasureTheory.Measure.IsAddHaarMeasure.domSMul, Subgroup.smulCommClass_right, NumberField.InfinitePlace.smul_apply, Finset.inv_op_smul_finset_distrib, rightCoset_eq_iff, le_stabilizer_iff_smul_le, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, MulAut.smul_def, absorbs_inter, MeasureTheory.measure_smul_eq_zero_iff, Subring.mem_pointwise_smul_iff_inv_smul_memβ‚€, IsUnit.stronglyMeasurable_const_smul_iff, LinearMap.rank_diagonal, bijective, QuotSMulTop.map_comp_mkQ, BlockMem.coe_top, OnePoint.isZeroAt_iff_exists_SL2Z, AlternatingGroup.isPreprimitive_of_three_le_card, Finset.prod_smul, lt_inv_smul_iff_of_pos, Matrix.toEuclideanLin_apply, orbitRel.Quotient.mem_subgroup_orbit_iff', LinearIndependent.group_smul_iff, LinearMap.toMatrixAlgEquiv'_id, toPerm_apply, smul_rayOfNeZero, UpperHalfPlane.glPos_smul_def, Subgroup.instCovariantClassHSMulLe, IsCusp.of_isFiniteRelIndex_conj, Finset.smul_finset_subset_smul_finset_iffβ‚€, Metric.smul_closedEBall, UpperHalfPlane.coe_pos_real_smul, isScalarTower_closedBall_closedBall_closedBall, Matrix.liftLinear_singleLinearMap, NonUnitalSubalgebra.prod_top, ModularGroup.coe_T_zpow_smul_eq, smul_uniformityβ‚€, SubMulAction.map_ofFixingSubgroupUnion_def, AddSubmonoid.smul_bot, isScalarTower_sphere_closedBall_closedBall, Set.powersetCard.faithfulSMul, LocalizedModule.divBy_mul_by, Submodule.pointwise_smul_toAddSubgroup, LinearMap.toMatrixβ‚‚'_compl₁₂, LieAlgebra.SpecialLinear.singleSubSingle_add_singleSubSingle, LinearMap.prodEquiv_apply, CStarMatrix.norm_def', MulActionWithZero.zero_smul, Representation.ofMulAction_single, Finset.mulDysonETransform_snd, LocalizedModule.map_surjective, AddSubmonoid.smul_sup, SubMulAction.ofStabilizer.isMultiplyPretransitive_iff, Matrix.toLin'_mul_apply, Complex.UnitDisc.coe_smul_circle, Quotient.smul_mk, UpperHalfPlane.denom_cocycle_Οƒ, Submonoid.mem_inv_pointwise_smul_iff, MeasureTheory.eventuallyConst_smul_set_ae, SkewMonoidAlgebra.comapSMul_def, Finset.smul_mem_smul_finset_iff, CliffordAlgebra.foldr'Aux_foldr'Aux, LieAdmissibleAlgebra.toSMulCommClass, isBlock_iff_smul_eq_or_disjoint, Finsupp.comapSMul_single, CStarMatrix.inner_toCLM_conjTranspose_left, LinearMap.toMatrix'_toLin', op_smul_set_stabilizer_subset, Subsemiring.smul_mem_pointwise_smul, IsUnit.aemeasurable_const_smul_iff, Sylow.smul_eq_iff_mem_normalizer, Subgroup.pointwise_smul_le_pointwise_smul_iffβ‚€, Finset.smul_mem_smul_finset_iffβ‚€, pow_smul_mod_minimalPeriod, TrivSqZeroExt.lift_comp_inrHom, NNReal.instPosSMulStrictMono, smul_lt_of_lt_one_left, isBlock_top, orbit_subgroup_eq_self_of_mem, CategoryTheory.End.smul_left, Subsemiring.pointwise_smul_toAddSubmonoid, instIsPushoutFractionRingPolynomial_1, OrderIso.smulRightDual_apply, isCoprime_group_smul_right, ModularGroup.tendsto_abs_re_smul, Rep.diagonalSuccIsoFree_inv_hom_single_single, MDifferentiableAt.clm_prodMap, smul_div', Matrix.toAlgEquiv_kroneckerStarAlgEquiv, Polynomial.instSMulCommClassElemRootSet, Set.exists_smul_inter_smul_subset_smul_inv_mul_inter_inv_mul, Module.add_smul, ofFixingSubgroup.isMultiplyPreprimitive, smul_inv_smulβ‚€, CategoryTheory.actionAsFunctor_map, IsLocalizedModule.map_surjective_iff_localizedModuleMap_surjective, Complex.UnitDisc.instIsScalarTower_circle_circle, Subgroup.Normal.conj_smul_eq_self, Monoid.PushoutI.NormalWord.base_smul_eq_smul, closure_smulβ‚€', Set.smul_univβ‚€, Finset.smul_inv_mul_eq_inv_mul_opSMul, Pi.intrinsicStar_comul_commSemiring, IsUnit.inv_smul, Matrix.det_kroneckerMapBilinear, Monoid.PushoutI.NormalWord.base_smul_def', Finset.smul_finset_symmDiff, SlashInvariantForm.coe_translate, Localization.algHom_ext_iff, Matrix.SpecialLinearGroup.toLin'_symm_to_linearMap, Finset.smul_finset_univβ‚€, measurableEmbedding_const_smulβ‚€, Matrix.vecMulBilin_apply, HasCompactMulSupport.comp_smul, cross_anticomm, Subgroup.Normal.conjAct, ModularGroup.exists_max_im, Finite.finite_mulAction_orbit, SubMulAction.ofStabilizer.isPretransitive_iff, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, Subsemiring.smul_bot, minimalPeriod_eq_one_iff_fixedBy, DistribMulAction.toLinearEquiv_symm_apply, cross_cross_eq_smul_sub_smul, Real.map_matrix_volume_pi_eq_smul_volume_pi, TrivSqZeroExt.algHom_ext'_iff, index_stabilizer, Submonoid.coe_pointwise_smul, instIsPretransitiveElemOrbit_1, LocalizedModule.map_injective, Monoid.CoprodI.Word.prod_smul, NumberField.InfinitePlace.smul_eq_comap, IsOpen.iUnion_smul, Complex.UnitDisc.instSMulCommClass_circle_left, Matrix.toAlgEquiv_kroneckerTMulStarAlgEquiv, Subgroup.smul_leftQuotientEquiv, groupCohomology.isMulCoboundaryβ‚‚_of_mem_coboundariesβ‚‚, mem_orbit_symm, KaehlerDifferential.mulActionBaseChange_smul_add, Subgroup.Commensurable.commensurable_conj, NumberField.InfinitePlace.smul_mk, SubMulAction.stabilizer_of_subMul, isCusp_SL2Z_iff', Subgroup.pointwise_smul_def, coeSubmodule_differentIdeal_fractionRing, QuotSMulTop.map_surjective, Ideal.Fiber.lift_residueField_surjective, Subgroup.conjAct_pointwise_smul_iff, IsCompact.exists_finite_cover_smul, Set.smul_set_univβ‚€, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar, Metric.preimage_smul_closedEBall, IsFoelner.tendsto_meas_smul_symmDiff, nhds_smulβ‚€, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, Matrix.isNilpotent_toLin'_iff, unitary.coe_smul, RegularWreathProduct.smul_def, ModularGroup.im_T_smul, MeasureTheory.measure_inv_smul_sdiff, smul_ball'', Finset.mul_mem_smul_finset_iff, orbitRel.Quotient.mem_subgroup_orbit_iff, Finset.mem_inv_smul_finset_iff, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, isInvariantBlock_iff_isFixedBlock, ProperSMul.isProperMap_smul_pair, Matrix.toLinearEquiv'_symm_apply, smul_closedBall_one, LinearMap.BilinForm.mul_toMatrix'_mul, Subring.pointwise_smul_toAddSubgroup, OnePoint.smul_some_eq_ite, Subring.coe_pointwise_smul, IsBlock.orbit_of_normal, IsScalarTower.of_smul_one_mul, CategoryTheory.PreGaloisCategory.toAut_hom_app_apply, InnerProductGeometry.norm_toLp_symm_crossProduct, mem_closure_isSwap, WithConv.toConv_smul, SubMulAction.mem_mul, Set.OrdConnected.smul, Set.powersetCard.isPretransitive_alternatingGroup, FreeMonoid.of_smul, Set.smul_set_pi, Set.Finite.absorbs_sInter, Multiset.smul_prod', CFC.sqrt_map_prod, AffineMap.smul_linear, Subgroup.leftCoset_cover_const_iff_surjOn, SubMulAction.fixingSubgroup_of_insert, MeasureTheory.Measure.addHaarScalarFactor_smul_congr, MonoidHom.smulOneHom_apply, Matrix.det_smul_of_tower, NonarchimedeanGroup.exists_openSubgroup_separating, Module.Ray.linearEquiv_smul_eq_map, Submonoid.smul_mem_pointwise_smul_iff, ball_mul, SubMulAction.ofFixingSubgroup_carrier, Homeomorph.smul_symm_apply, IsCompact.div_closedBall, MatrixEquivTensor.toFunBilinear_apply, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, groupCohomology.isMulCocycle₁_of_mem_cocycles₁, Subgroup.smul_diff_smul', QuotientGroup.eq_class_eq_leftCoset, PosSMulMono.nnrat_of_rat, HNNExtension.NormalWord.prod_smul, Monoid.PushoutI.NormalWord.instFaithfulSMul, StarMul.toStarModule, IntermediateField.continuousSMul, units_smul_eq_self_iff, Matrix.toLpLin_symm_pow, TensorProduct.prodLeft_tmul, denseRange_smul, units_smul_eq_neg_iff, smul_inv_mem_fixedBy_iff_mem_fixedBy, Matrix.linfty_opNNNorm_toMatrix, disjoint_image_image_iff, Subgroup.Commensurable.commensurator_mem_iff, MonoidHom.transfer_def, Finset.smul_univ, Matrix.toEuclideanCLM_toLp, approxOrderOf.smul_subset_of_coprime, isClosedMap_smul, isPreprimitive_ofFixingSubgroup_conj_iff, ProperSMul.toContinuousSMul, cross_anticomm', smul_inv', ENNReal.instIsScalarTowerNNReal, Set.disjoint_smul_set, Pi.intrinsicStar_comul, MeasureTheory.innerRegular_map_smul, NumberField.InfinitePlace.isUnramified_smul_iff, Homeomorph.smulOfNeZero_apply, Units.coe_smul, Projectivization.cross_mk_of_cross_ne_zero, Matrix.toLpLin_one, Monoid.PushoutI.NormalWord.prod_summand_smul, CFC.nnrpow_map_pi, toFun_apply, SubMulAction.mem_fixingSubgroup_insert_iff, isCancelSMul_iff_stabilizer_eq_bot, OreLocalization.expand', CategoryTheory.PreGaloisCategory.IsFundamentalGroup.transitive_of_isGalois, Algebra.PreSubmersivePresentation.aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, TensorProduct.prodLeft_symm_tmul, EisensteinSeries.G2_S_transform, smul_coe_set, ModularGroup.SL_to_GL_tower, QuotientGroup.univ_eq_iUnion_smul, Matrix.piLp_ofLp_toEuclideanLin, OnePoint.map_smul, MeasureTheory.Measure.isHaarMeasure_map_smul, Submonoid.smul_sup, lieEquivMatrix'_apply, leftCoset_eq_iff, Set.smul_mem_smul_set_iffβ‚€, Homeomorph.smul_apply, SimpleGraph.linearIndependent_lapMatrix_ker_basis_aux, continuousSMul_closedBall_ball, Sylow.orbit_eq_top, MulSemiringAction.toAlgEquiv_symm_apply, Ideal.Quotient.smul_top, Submonoid.le_pointwise_smul_iffβ‚€, smul_subset_of_set_mem_fixedBy, Commute.smul_left_iff, LinearMap.minpoly_toMatrix', Submodule.pointwise_smul_toAddSubmonoid, List.smul_prod, isScalarTower_sphere_sphere_sphere, toPerm_symm_apply, jacobiTheta_S_smul, isPretransitive_iff_base, smul_smul, RightCancelMonoid.faithfulSMul, RightPreLieAlgebra.toSMulCommClass, isCoatom_stabilizer_iff_preprimitive, Subgroup.leftTransversals.smul_diff_smul, GrpCat.SurjectiveOfEpiAuxs.fromCoset_eq_of_mem_range, ModularGroup.re_T_smul, IsFoelner.mean_smul_eq_mean_smul, NNReal.smulCommClass_left, OreLocalization.expand, SubMulAction.stabilizer_of_subMul.submonoid, smul_orbit, LinearMap.prodEquiv_symm_apply, absorbs_iInter, Subring.mem_inv_pointwise_smul_iff, Matrix.toLpLin_pow, Module.ext_iff, Set.ncard_smul_set, CongruenceSubgroup.IsArithmetic.conj, DiscreteTiling.PlacedTile.mem_inv_smul_iff_smul_mem, Matrix.isUnit_toLin'_iff, Subalgebra.instCovariantClassHSMulLe, LinearMap.CompatibleSMul.units, AddSubmonoid.mem_pointwise_smul_iff_inv_smul_mem, Polynomial.adjSylvester_comp_sylveserMap, Ideal.ResidueField.liftₐ_comp_toAlgHom, HNNExtension.NormalWord.smul_ofGroup, Submonoid.pointwise_smul_le_iffβ‚€, Matrix.toLin'_mul, hasDerivAt_update, CongruenceSubgroup.Gamma_cong_eq_self, UpperHalfPlane.coe_smul_of_det_pos, ext_iff, AddSubmonoid.pointwise_isCentralScalar, op_smul_coe_set, SubMulAction.inclusion.toFun_eq_coe, Complex.UnitDisc.coe_closedBall_smul, Matrix.ofLp_toLpLin, div_ball, zpow_mod_period_smul, smul_eq_self_of_preimage_zpow_eq_self, Rep.ofMulDistribMulAction_ρ_apply_apply, MeasureTheory.MeasurePreserving.smulInvariantMeasure_iterateMulAct, OrderIso.smulRight_symm_apply, isCoprime_group_smul_left, IsQuotientCoveringMap.apply_eq_iff_mem_orbit, MDifferentiableOn.clm_prodMap, Subgroup.pointwise_isCentralScalar, LinearMap.det_toLin', Monoid.CoprodI.Word.mem_smul_iff_of_ne, MulActionWithZero.smul_zero, CategoryTheory.PreGaloisCategory.toAut_surjective_isGalois, Monoid.CoprodI.Word.of_smul_def, Representation.norm_ofMulDistribMulAction_eq, Matrix.kroneckerMapBilinear_apply_apply, orbit.eq_or_disjoint, NumberField.InfinitePlace.smul_coe_apply, Finite.to_properlyDiscontinuousSMul, Subgroup.smul_apply_eq_smul_apply_inv_smul, Subsemiring.pointwise_central_scalar, Matrix.toLinearMapRight'_mul_apply, interior_smul, Finset.smul_finset_subset_iffβ‚€, oneEmbedding_isPretransitive_iff, measurableSMulβ‚‚_iterateMulAct, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, Subring.pointwise_smul_subset_iff, unitary.smul_mem, SubMulAction.disjoint_val_image, UpperHalfPlane.modular_S_smul, isBlock_subgroup', instSMulCommClass_sphere_closedBall_closedBall, Subgroup.mem_inv_pointwise_smul_iffβ‚€, kroneckerTMulLinearEquiv_one, ModularGroup.re_T_inv_smul, ContinuousMultilinearMap.prodL_apply, Subgroup.normalCore_eq_iInf_conjAct, preimage_smul_setβ‚›β‚—_of_isUnit_isUnit, Metric.preimage_smul_eball, Sylow.smul_eq_of_normal, hasEigenvector_toLin'_diagonal, mem_stabilizer_finset, IsCompact.mul_closedBall, IsFixedBlock.orbit, LinearMap.toMatrixAlgEquiv'_apply, CongruenceSubgroup.isArithmetic_conj_SL2Z, Module.Ray.units_smul_of_pos, arrowAction_smul, mem_fixedPoints, Orientation.map_eq_det_inv_smul, LinearMap.toMatrix'_algebraMap, IsUnit.smul_mem_nhds_smul_iff, IsPartition.of_orbits, Cardinal.mk_smul_set, LocalizedModule.coe_map_eq, HNNExtension.NormalWord.unitsSMul_one_group_smul, SimpleGraph.top_le_span_range_lapMatrix_ker_basis_aux, Set.mem_invOf_smul_set, stabilizer_smul_eq_stabilizer_map_conj, Monoid.PushoutI.NormalWord.prod_base_smul, Finset.smul_finset_symmDiffβ‚€, AddSubmonoid.smul_mem_pointwise_smul, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, ValuationSubring.pointwise_smul_toSubring, SubMulAction.nat_card_ofStabilizer_eq, Unitary.smul_mem_of_mem, instIsLeftCancelSMul_1, RootPairing.GeckConstruction.span_range_h'_eq_top, IsOpen.dense_iUnion_preimage_smul, continuousSMul_sphere_closedBall, coe_quotient_smul_fixedPoints, OreLocalization.zsmul_eq_zsmul, AddSubgroup.pointwise_smul_le_iffβ‚€, Monoid.CoprodI.Word.cons_eq_smul, smul_orbit_subset, smul_iterate, isQuotientCoveringMap_iff_isCoveringMap_and, Submonoid.instSMulCommClassSubtypeMemCenter_1, Subring.mem_smul_pointwise_iff_exists, MulActionHom.coe_one, Matrix.toLin'_reindex, hasStrictDerivAt_finCons', isScalarTower_closedBall_ball_ball, LinearMap.BilinForm.toMatrix'_compLeft, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_auxβ‚‚, hasStrictDerivAt_finCons, IsTrivialBlock.isBlock, Set.subset_smul_set_iff, orbitRel.Quotient.orbit.coe_smul, ContinuousMultilinearMap.piLinearEquiv_apply, GradedMonoid.smulCommClass_right, orbit_smul_subset, inv_smul_smul, UpperHalfPlane.im_smul, mem_stabilizer_set_iff_subset_smul_set, IsCompact.closedBall_div, NumberField.InfinitePlace.isComplex_smul_iff, AffineMap.isCentralScalar, ball_div, DiscreteTiling.PlacedTile.coe_mk_mk, OnePoint.IsZeroAt.smul_iff, SkewMonoidAlgebra.comapSMul_single, instIsCancelSMul, LinearMap.toMatrix'_apply, ModularGroup.normSq_S_smul_lt_one, SubMulAction.inclusion_injective, Matrix.toLpLin_toLp, ContinuousLinearMap.prodMapL_apply, Subsemiring.smul_mem_pointwise_smul_iffβ‚€, map_equiv_traceDual, HNNExtension.NormalWord.instFaithfulSMul_1, isPretransitive_compHom, UpperHalfPlane.coe_smul, pow_period_smul, MeasureTheory.measure_symmDiff_inv_smul, smul_set_stabilizer_subset, ModularGroup.exists_row_one_eq_and_min_re, AddSubmonoid.pointwise_smul_le_iff, NNRat.instContinuousSMulOfIsScalarTowerOfRat, Unitary.coe_smul, SubMulAction.mem_orbit_subMul_iff, Matrix.IntrinsicStar.isSelfAdjoint_toLin'_iff, mem_stabilizerSubmonoid_iff, Subgroup.mem_smul_pointwise_iff_exists, HNNExtension.NormalWord.group_smul_def, RelEmbedding.apply_faithfulSMul, Equiv.Perm.applyFaithfulSMul, image_inter_image_iff, CStarMatrix.toCLM_apply_single, Subring.smul_bot, continuousWithinAt_const_smul_iff, SubMulAction.val_image_orbit, isCoprime_group_smul, Circle.instContinuousSMul, isHomeomorph_smul, mulAutArrow_apply_apply, QuotSMulTop.equivQuotTensor_naturality, ArithmeticFunction.sum_divisorsAntidiagonal_eq_sum_divisors, LinearMap.toMatrix'_symm, isPretransitive_quotient, smul_inv_smul, smul_mem_nhds_self, Monoid.PushoutI.NormalWord.prod_smul_empty, normal_iff_eq_cosets, MeasureTheory.Measure.Regular.domSMul, isSimplyConnected_smul_set_iff, LinearMap.mapMatrix_smul, InnerProductGeometry.norm_ofLp_crossProduct, AdicCompletion.transitionMap_comp_reduceModIdeal, Subsemiring.pointwise_smul_subset_iff, Metric.preimage_smul_sphere, Subring.smul_closure, DiscreteTiling.PlacedTile.mem_smul_iff_smul_inv_mem, measurableEmbedding_const_smul, IsOpen.leftCoset, SubMulAction.mem_one, ModularGroup.re_T_zpow_smul, isPreprimitive_fixingSubgroup_insert_iff, QuotientGroup.measurableSMul, MeasureTheory.measure_inter_inv_smul, instIsPretransitiveOfSubsingleton, Matrix.kroneckerTMulAlgEquiv_symm_apply, continuousWithinAt_const_smul_iffβ‚€, Matrix.ofLp_toEuclideanCLM, isUnit_smul_iff, ergodic_smul_of_denseRange_pow, mem_stabilizer_set', groupCohomology.isMulCocycleβ‚‚_of_mem_cocyclesβ‚‚, CStarMatrix.toCLM_apply_eq_sum, IsPGroup.card_orbit, op_smul_op_smul, stronglyMeasurable_const_smul_iff, Equiv.Perm.OnCycleFactors.val_centralizer_smul, Submonoid.instSMulCommClassSubtypeMemCenter, Matrix.kroneckerTMulStarAlgEquiv_apply, dense_orbit, Subgroup.exists_leftTransversal_of_FiniteIndex, ContinuousMultilinearMap.smul_prod_smul, Matrix.range_toLin', Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, LinearMap.prodMapLinear_apply, MulActionHom.coe_mul, Submonoid.mem_inv_pointwise_smul_iffβ‚€, smul_le_iff_le_one_left, CuspForm.coe_translate, MeasureTheory.smul_ae, smul_algebraMap, LinearMap.mul_toMatrix', continuousAt_const_smul_iffβ‚€, IsBaseChange.pi, zpow_smul_eq_iff_period_dvd, MeasureTheory.QuotientMeasureEqMeasurePreimage.smulInvariantMeasure_quotient, Commute.smul_right_iff, Metric.smul_sphere, Matrix.toLpLin_symm_id, SubMulAction.ofFixingSubgroup_of_eq_apply, Finset.smul_finset_subset_iff, Set.iUnion_inv_smul, ModularGroup.im_lt_im_S_smul, Matrix.isPositive_toEuclideanLin_iff, Set.op_smul_inter_nonempty_iff, IsClosed.leftCoset, Set.natCard_smul_set, Subring.instCovariantClassHSMulLe, HNNExtension.NormalWord.instFaithfulSMul, absorbs_iff_eventually_cobounded_mapsTo, Subgroup.instMeasurableConstSMul, Submodule.mulRightMap_eq_mulMap_comp, Set.powersetCard.mulActionHom_compl_mulActionHom_compl, pow_smul_eq_iff_minimalPeriod_dvd, Metric.preimage_smul_closedBall, IsBaseChange.prodMap, kroneckerTMulLinearEquiv_mul, swap_mem_closure_isSwap, QuadraticMap.discr_comp, CategoryTheory.PreGaloisCategory.continuousSMul_aut_fiber, Subfield.continuousSMul, mulAutArrow_apply_symm_apply, Equidecomp.refl_toPartialEquiv, kroneckerTMulLinearEquiv_symm_kroneckerTMul, SubMulAction.nat_card_ofStabilizer_eq_add_one, AddSubgroup.relIndex_pointwise_smul, LinearMap.lsum_single, Submodule.quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, ConvexCone.smul_mem_iff, Units.measurableSMul, IsScalarTower.to₂₃₄, LinearMap.toMatrix'_mul, isFoelner_iff, Units.instMeasurableConstSMul, MeasureTheory.measure_smul_null, IsBlock.univ, amenable_of_maxFoelner_neBot, AddSubmonoid.mem_inv_pointwise_smul_iffβ‚€, SubMulAction.coe_mul, LieAlgebra.lie_smul, IsFoelner.tendsto_meas_smul_symmDiff_smul, Fin.partialProd_left_inv, Projectivization.mk_eq_mk_iff_crossProduct_eq_zero, Matrix.diagonal_toLin', CStarMatrix.toCLM_apply, AddSubmonoid.smul_closure, ModularGroup.im_T_zpow_smul, AddSubgroup.pointwise_smul_toAddSubmonoid, smul_closure_orbit_subset, Matrix.charpoly_toLin', properSMul_iff_continuousSMul_ultrafilter_tendsto_t2, SubMulAction.ofFixingSubgroup.isMultiplyPretransitive, Subsemiring.mem_inv_pointwise_smul_iffβ‚€, Matrix.toLin'_pow, AddSubgroup.mem_smul_pointwise_iff_exists, LieAdmissibleAlgebra.toIsScalarTower, RelIso.apply_faithfulSMul, instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient, continuousOn_const_smul_iffβ‚€, Matrix.toLinAlgEquiv'_apply, Matrix.l2_opNNNorm_def, smul_mem_of_set_mem_fixedBy, Finset.card_smul_inter, smul_mem_nhds_smul_iffβ‚€, HNNExtension.NormalWord.group_smul_head, IsScalarTower.left, SubMulAction.ENat_card_ofStabilizer_add_one_eq, Ideal.isPretransitive_of_isGalois, Subgroup.quotientEquivSigmaZMod_apply, Ideal.coe_smul_primesOver_mk, Matrix.minpoly_toLin', CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isConnected, AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem, ModularForm.slash_action_eq'_iff, PositiveLinearMap.gnsStarAlgHom_apply, MulSemiringAction.toRingEquiv_symm_apply, smulCommClass_self, Subgroup.IsComplement.pairwiseDisjoint_smul, one_smul, SetLike.forall_smul_mem_iff, LinearMap.toMatrix'_intrinsicStar, Set.preimage_smul, MDifferentiable.clm_prodMap, UpperHalfPlane.pos_real_smul_injective, IterateMulAct.mk_smul, coe_smul_fixedPoints_of_normal, cross_apply, zpow_smul_eq_iff_minimalPeriod_dvd, ENNReal.smulCommClass_left, Finset.mulDysonETransform_fst, Set.powersetCard.mulActionHom_compl_bijective, UpperHalfPlane.J_smul, IsUnit.aestronglyMeasurable_const_smul_iff, IsQuotientCoveringMap.toContinuousConstSMul, SlashInvariantForm.slash_action_eqn'', LinearMap.toMatrixAlgEquiv'_toLinAlgEquiv', IsQuasiPreprimitive.toIsPretransitive, kroneckerTMulLinearEquiv_tmul, isScalarTower_sphere_sphere_closedBall, QuotientGroup.orbit_eq_out_smul, Complex.UnitDisc.instSMulCommClass_closedBall_right, mem_subgroup_orbit_iff, Set.preimage_smul_inv, IsSMulRegular.of_smul_eq_one, vecMulVecBilin_apply_apply, isAdjointPair_toLinearMapβ‚‚', Matrix.toLin'_apply', QuotSMulTop.map_exact, IsOpen.dense_iUnion_smul, Configuration.ofField.crossProduct_eq_zero_of_dotProduct_eq_zero, Matrix.ker_toLin'_eq_bot_iff, LinearMap.vecConsβ‚‚_apply, Submonoid.mem_pointwise_smul_iff_inv_smul_memβ‚€, period_eq_one_iff, bijectiveβ‚€, inv_smul_lt_iff_of_pos, MulSemiringAction.smul_mul, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, Ideal.isPretransitive_of_isGaloisGroup, orbitRel_apply, Subgroup.conj_smul_le_of_le, IsPretransitive.of_isScalarTower, Set.mem_inv_smul_set_iff, Subring.le_pointwise_smul_iffβ‚€, MulDistribMulAction.toMulEquiv_symm_apply, IsLowerSet.smul_subset, Complex.UnitDisc.instIsScalarTower_closedBall, LinearMap.BilinForm.mul_toMatrix', cfcβ‚™_map_prod, Set.smul_set_iInter, isOpenMap_smulβ‚€, CStarMatrix.mul_entry_mul_eq_inner_toCLM, Subring.smul_mem_pointwise_smul_iffβ‚€, SubMulAction.notMem_val_image, Finset.mulDysonETransform.smul_finset_snd_subset_fst, Set.smul_set_compl, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, AddSubmonoid.mem_pointwise_smul_iff_inv_smul_memβ‚€, Subsemiring.pointwise_smul_def, Function.End.smul_def, IsPGroup.smul_mul_inv_trivial_or_surjective, LeftPreLieAlgebra.ext_iff, LinearMap.toMatrixRight'_id, leibniz_cross, orbitZPowersEquiv_symm_apply, IsSimpleRing.exists_algEquiv_matrix_end_mulOpposite, Subalgebra.smul_mem_pointwise_smul, isScalarTower_sphere_sphere_ball, inv_smul_le_iff_of_pos, Units.smul_inv, Subgroup.Commensurable.commensurable_inv, ModularGroup.exists_one_half_le_im_smul, Subgroup.instIsScalarTowerSubtypeMem, MulDistribMulAction.ext_iff, IsScalarTower.algebraMap_smul, measurableSMul_iterateMulAct, NonUnitalCommCStarAlgebra.toStarModule, Set.smul_set_sdiff, instIsPretransitiveElemOrbit, LinearMap.prodMapAlgHom_apply_apply, smul_closedBall'', Subalgebra.inclusion.isScalarTower_right, orbitRel.Quotient.orbit_mk, Submonoid.pointwise_smul_subset_iff, mem_stabilizer_set, IsMultiplyPreprimitive.isPreprimitive_ofFixingSubgroup, surjectiveβ‚€, Subgroup.center.smulCommClass_left, UpperHalfPlane.petersson_slash_SL, pow_smul_eq_iff_period_dvd, smul_pi, Matrix.ker_diagonal_toLin', IsFixedBlock.univ, Subsemiring.instSMulCommClassSubtypeMemCenter_1, mem_stabilizer_finset_iff_smul_finset_subset, IsPreprimitive.of_prime_card, Subgroup.Commensurable.conj, isMultiplyPreprimitive_iff, Quotient.mk_smul_out, Finsupp.comapSMul_def, Submonoid.mem_pointwise_smul_iff_inv_smul_mem, IsSMulRegular.pow_iff, Set.smul_set_pi_of_isUnit, Units.val_smul, MulActionHom.map_mem_fixedPoints, isScalarTower_sphere_closedBall_ball, Subsemiring.pointwise_smul_le_pointwise_smul_iff, CategoryTheory.PreGaloisCategory.isPretransitive_of_surjective, AddSubmonoid.smul_mem_pointwise_smul_iffβ‚€, smul_mem_nhds_smul, ModularForm.SL_slash_def, Matrix.toLin'_one, Commute.smul_right_iffβ‚€, smul_finprod', GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset', OnePoint.smul_infty_eq_ite, NNReal.smul_def, inv_smul_eq_iffβ‚€, MultilinearMap.piFamilyβ‚—_apply, le_smul_of_one_le_left, Finsupp.comapSMul_apply, DistribMulAction.ext_iff, Set.inv_smul_set_distrib, NonUnitalStarSubalgebra.prod_inf_prod, Subgroup.transferTransversal_apply', AddAut.apply_faithfulSMul, cfcHom_nnreal_eq_restrict, IsOpen.rightCoset, Subgroup.continuousSMul, NNReal.smulCommClass_right, NumberField.InfinitePlace.isReal_smul_iff, Subring.pointwise_central_scalar, QuotientGroup.instContinuousSMul, Algebra.smul_units_def, Subgroup.smul_closure, UpperHalfPlane.coe_J_smul, orbitEquivQuotientStabilizer_symm_apply, ContinuousAlternatingMap.piLIE_symm_apply_apply, endVecAlgEquivMatrixEnd_apply_apply, alternatingGroup.exists_mem_stabilizer_smul_eq, Subring.pointwise_smul_le_pointwise_smul_iff, IsPreprimitive.of_isTrivialBlock_base, IsOpen.smul, AlgebraicIndependent.liftAlgHom_comp_reprField, isSimpleOrder_blockMem_iff_isPreprimitive, Matrix.trace_toLin'_eq, MulDistribMulAction.smul_one, rightCoset_mem_rightCoset, Units.continuousConstSMul, invOf_smul_smul, Units.smulCommClass', tendsto_const_smul_iff, List.smul_prod', Submonoid.pointwise_isCentralScalar, Rat.cast_smul_eq_qsmul, IsClosed.smul_right_of_isCompact, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, smul_mem_nhds_smul_iff, Submodule.smul_mem_iff', PosSMulStrictMono.nnrat_of_rat, Units.coe_inv_smul, MulActionHom.toQuotient_apply, Module.FinitePresentation.linearEquivMapExtendScalars_apply, SubMulAction.mem_ofStabilizer_iff, BlockMem.coe_bot, isBlock_subgroup, ContinuousAlternatingMap.piLinearEquiv_symm_apply, SubMulAction.ofStabilizer.snoc_castSucc, OnePoint.IsBoundedAt.smul_iff, Submonoid.center.smulCommClass_left, IsPretransitive.of_compHom, CategoryTheory.ActionCategory.curry_apply_left, Set.iUnion_smul_eq_setOf_exists, FixedPoints.mem_subgroup, instIsLeftCancelSMul, Complex.UnitDisc.coe_smul_closedBall, MeasureTheory.smulInvariantMeasure_tfae, UpperHalfPlane.pos_real_re, DiscreteTiling.PlacedTile.coe_smul, SubMulAction.mem_ofFixingSubgroup_insert_iff, coe_aestabilizer, LinearMap.toMatrix'_comp, Matrix.toLinearEquiv'_apply, LinearMap.isUnit_toMatrix'_iff, hasDerivAtFilter_finCons', CategoryTheory.End.smul_right, Equiv.Perm.isPretransitive_of_isCycle_mem, isMultiplyPreprimitive_succ_iff_ofStabilizer, ArithmeticFunction.coe_zeta_smul_apply, AddAction.toPermHom_apply_symm_apply, IsUnit.preimage_smul_set, Finset.smul_univβ‚€', hasDerivWithinAt_finCons', Matrix.toBilin'_comp, Matrix.isHermitian_iff_isSymmetric, MeasureTheory.smul_mem_ae, IsFoelner.mean_smul_eq_mean, leftCoset_mem_leftCoset, ofQuotientStabilizer_mk, Subsemiring.instCovariantClassHSMulLe, algebraMap.coe_smul', Subring.pointwise_smul_le_iffβ‚€, MeasureTheory.measure_inv_smul_symmDiff, ergodic_smul_of_denseRange_zpow, CategoryTheory.PreGaloisCategory.instIsPretransitiveCarrierObjFintypeCatOfIsConnected, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, Subgroup.pointwise_smul_le_iffβ‚€, isSMulRegular_of_group, Complex.UnitDisc.instSMulCommClass_circle_right, Module.FinitePresentation.exists_lift_equiv_of_isLocalizedModule, MeasureTheory.ergodicSMul_iterateMulAct, AddSubgroup.smul_mem_pointwise_smul, Metric.smul_closedBall, Metric.smul_eball, SlashInvariantForm.slash_action_eqn_SL'', Monoid.PushoutI.NormalWord.summand_smul_def', Subgroup.smul_sup, Matrix.toEuclideanLin_conjTranspose_eq_adjoint, Set.smul_univ, ContMDiffAt.clm_prodMap, zpow_add_period_smul, smul_one_smul, isBlock_iff_disjoint_smul_of_ne, Set.smul_set_sdiffβ‚€, MeasurableSet.const_smul_of_ne_zero, IsLocalizedModule.map_bijective_iff_localizedModuleMap_bijective, mem_stabilizer_set_iff_smul_set_subset, QuotSMulTop.equivQuotTensor_naturality_mk, Ideal.ResidueField.algHom_ext_iff, Matrix.toLpLinAlgEquiv_apply_apply_ofLp, Localization.instSMulCommClassOfIsScalarTower, LinearMap.toMatrix'_id, Equiv.Perm.instIsPreprimitive, Set.smul_set_univ, LocalizedModule.mul_by_divBy, Projectivization.cross_mk, support_comp_inv_smul, zpowersQuotientStabilizerEquiv_symm_apply, IsScalarTower.of_compHom, Subgroup.smul_def, Submodule.mem_smul_top_iff, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, LinearMap.BilinForm.toMatrix'_comp, Submonoid.center.smulCommClass_right, continuousOn_const_smul_iff, Subgroup.instMeasurableSMul, mulLinearMap_apply_apply, UpperHalfPlane.coe_specialLinearGroup_apply, OreLocalization.smul_oreDiv, IsUpperSet.smul, AlternatingGroup.isPretransitive_of_three_le_card, triple_product_eq_det, mem_fixedPoints_iff_card_orbit_eq_one, KaehlerDifferential.derivationQuotKerTotal_lift_comp_linearCombination, tangentConeAt_mono_field, smul_fixedBy, IsPreprimitive.exists_mem_smul_and_notMem_smul, MeasureTheory.measure_smul, orbit.coe_smul, Finset.smul_finset_eq_univ, Finset.op_smul_convolution_eq_convolution_smul, DiscreteTiling.PlacedTile.smul_mem_smul_iff, Monoid.CoprodI.Word.equivPair_head_smul_equivPair_tail, Equiv.smulRight_symm_apply, Matrix.toLinearMapRight'_apply, is_two_pretransitive_iff, smul_pow, Subsemiring.coe_pointwise_smul, ContinuousMultilinearMap.piβ‚—α΅’_symm_apply, orbitZPowersEquiv_symm_apply', CategoryTheory.PreGaloisCategory.IsFundamentalGroup.continuous_smul, MeasureTheory.NullMeasurableSet.smul, MeasureTheory.measure_inv_smul_union, Units.isScalarTower', Set.smul_set_eq_univ, LieAlgebra.SpecialLinear.val_single, Matrix.ofLp_toEuclideanLin_apply, NNReal.instContinuousSMulOfReal, Subgroup.smul_inf, Monoid.CoprodI.Word.equivPair_smul_same, Equidecomp.symm_involutive, SubMulAction.ofStabilizer.isMultiplyPretransitive, CFC.nnrpow_eq_nnrpow_pi, SubMulAction.ofFixingSubgroup.append_right, SMulCommClass.of_mul_smul_one, Matrix.mulVecBilin_apply, nat_smul_eq_nsmul, MultilinearMap.piFamily_smul, lieEquivMatrix'_symm_apply, Projectivization.smul_def, Matrix.proj_diagonal, ModularGroup.im_smul_eq_div_normSq, isPretransitive_of_is_two_pretransitive, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle, isOpenMap_smul, Submonoid.instCovariantClassHSMulLe, mem_own_leftCoset, LocalizedModule.map_id, IsUnit.smul_uniformity, Matrix.linfty_opNorm_toMatrix, isSimplyConnected_smul_setβ‚€_iff, Subgroup.smul_opposite_image_mul_preimage', CategoryTheory.PreGaloisCategory.isGalois_iff_pretransitive, Subring.continuousSMul, Module.IsTorsionBySet.isScalarTower, SubMulAction.subset_coe_one, AddSubgroup.pointwise_smul_le_pointwise_smul_iffβ‚€, NumberField.InfinitePlace.comap_smul, FreeGroup.startsWith.smul_def, NNRat.cast_smul_eq_nnqsmul, tendsto_const_smul_iffβ‚€, Ideal.coe_smul_primesOver_eq_map_galRestrict, Matrix.SpecialLinearGroup.toLin'_to_linearMap, LinearMap.mul_toMatrixβ‚‚'_mul, LinearMap.toMatrixβ‚‚'_mul, MeasureTheory.eventually_nhds_one_measure_smul_diff_lt, Finset.smul_convolution_eq_convolution_inv_mul, IsUnit.smul_left_cancel, OnePoint.smul_infty_def, AddSubgroup.smul_mem_pointwise_smul_iffβ‚€, EisensteinSeries.tendsto_double_sum_S_act, Subsemiring.instSMulCommClassSubtypeMemCenter, LinearMap.intrinsicStar_single, Module.Basis.map_orientation_eq_det_inv_smul, StarSemigroup.toOpposite_starModule, triple_product_permutation, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset, instSMulCommClass_sphere_ball_ball, Group.preimage_smul_set, HNNExtension.NormalWord.smul_cons, cosetToCuspOrbit_apply_mk, SubMulAction.SMulMemClass.coe_subtype, Matrix.kroneckerMapBilinear_mul_mul, ContMDiff.clm_prodMap, SubMulAction.isCentralScalar, stabilizerEquivStabilizer_one, Submonoid.continuousSMul, NormedSpace.norm_smul_le, RelHom.smul_def, orbit.pairwiseDisjoint, SetLike.GradedMul.toGradedSMul, IsUnit.continuousOn_const_smul_iff, OnePoint.exists_mem_SL2, Monoid.PushoutI.NormalWord.cons_eq_smul, LinearEquiv.smulOfNeZero_symm_apply, Submonoid.subset_pointwise_smul_iff, Subsemiring.mem_pointwise_smul_iff_inv_smul_mem, Subgroup.conjAct_pointwise_smul_eq_self, IsTopologicallyTransitive.exists_smul_inter, SubMulAction.compl_def, DistribMulAction.toAddEquiv_symm_apply, orbit_smul, Finset.card_inter_smul, HasDerivAtFilter.prodMk, ContinuousMultilinearMap.prodL_symm_apply, CliffordAlgebra.foldr'Aux_apply_apply, le_smul_iff_one_le_left, QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last, EMetric.preimage_smul_closedBall, orbit_submonoid_subset, LinearMap.IntrinsicStar.isSelfAdjoint_iff_toMatrix', Matrix.toLin_finTwoProd_toContinuousLinearMap, Set.smul_inter_nonempty_iff, Finset.mulETransformRight_fst, injectiveβ‚€, orbit_subgroup_eq_rightCoset, pow_mod_period_smul, LinearMap.toMatrixAlgEquiv'_symm, AddSubmonoid.mem_inv_pointwise_smul_iff, OreLocalization.oreDiv_smul_oreDiv, Set.powersetCard.isPreprimitive_perm, instIsPushoutFractionRingPolynomial, MeasureTheory.measure_inv_smul_inter, hasDerivAtFilter_finCons, HasStrictDerivAt.prodMk, SubMulAction.SMulMemClass.subtype_apply, Set.encard_smul_set, SubMulAction.coe_one, SubMulAction.inclusion.coe_eq, lt_smul_of_one_lt_left, IsOpen.smulβ‚€, Matrix.kroneckerTMulBilinear_apply, comp_smul_left, RingHom.smulOneHom_apply, IsOpen.smul_left, Set.powersetCard.isPretransitive_of_isMultiplyPretransitive, LinearMap.prodMap_smul, Finset.smul_prod, SetLike.mk_smul_of_tower_mk, Set.inv_op_smul_set_distrib, one_smul, hasEigenvalue_toLin'_diagonal_iff, ContinuousLinearMap.prodL_apply, IsLocalizedModule.map_injective_iff_localizedModuleMap_injective, Sylow.coe_subgroup_smul, MeasureTheory.smul_set_ae_eq, Set.smul_div_smul_comm, pow_period_add_smul, subset_interior_smul_right, IsCyclic.mulAutMulEquiv_symm_apply_symm_apply, Matrix.toLpLin_mul, IsBlock.orbit, Matrix.toLin'_submatrix, Polynomial.instIsScalarTowerElemRootSet, MulSemiringAction.smul_one, HasDerivAt.prodMk, Subring.pointwise_smul_le_pointwise_smul_iffβ‚€, punctured_nhds_smulβ‚€, pretransitive_iff_subsingleton_quotient, isTopologicallyTransitive_iff_dense_iUnion, cross_dot_cross, SetLike.smul_of_tower_def, SubMulAction.ofFixingSubgroup_of_singleton_bijective, Subsemiring.subset_pointwise_smul_iff, orbit_eq_iff, Equiv.Perm.OnCycleFactors.toPermHom_apply, lt_smul_iff_one_lt_left, Monoid.PushoutI.NormalWord.of_smul_eq_smul, Sylow.smul_subtype, Matrix.toEuclideanLin_apply_piLp_toLp, Set.powersetCard.isPreprimitive_alternatingGroup, continuousSMul_iff_stabilizer_isOpen, LieAlgebra.ext_iff, hasStrictDerivAt_pi, Submonoid.smul_closure, AlgEquiv.smul_units_def, Sylow.isPretransitive_of_finite, ContinuousAlternatingMap.prodLIE_apply, Subring.smul_sup, Finset.smul_prod', subgroup_smul_def, threeGPFree_smul_set, SubMulAction.ofFixingSubgroupEmpty_equivariantMap_bijective, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, DistribMulAction.smul_zero, Module.zero_smul, MulDistribMulAction.smul_mul, continuousSMul_closedBall_closedBall, ModularGroup.T_S_rel, Submonoid.instMeasurableConstSMul, HasDerivWithinAt.prodMk, Set.smul_inter_nonempty_iff', Equiv.swap_smul_self_smul, AddSubgroup.coe_pointwise_smul, LinearMap.vecEmptyβ‚‚_apply, IsRightCancelMulZero.faithfulSMul, IsUnit.isHomeomorph_smul, aemeasurable_const_smul_iff, IsGalois.map_fixingSubgroup, Matrix.toLinAlgEquiv'_toMatrixAlgEquiv', AddSubmonoid.coe_pointwise_smul, IsUnit.smul_tendsto_smul_iff, MeasureTheory.measure_preimage_smul, MeasureTheory.Measure.instSMulInvariantMeasureSubtypeMemSubmonoidOfIsMulLeftInvariant, QuotSMulTop.map_comp, AddSubgroup.pointwise_smul_le_pointwise_smul_iff, Projectivization.cross_mk_of_ne, Matrix.kroneckerTMulAlgEquiv_apply, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset_nin_range, LieAdmissibleAlgebra.ext_iff, endVecAlgEquivMatrixEnd_symm_apply_apply, IsUnit.smul_bijective, properSMul_iff_continuousSMul_ultrafilter_tendsto, Matrix.trace_kroneckerMapBilinear, Polynomial.rootSet.coe_smul, IsometryEquiv.constSMul_apply, Matrix.toLinAlgEquiv'_one, IsUnit.isClosedMap_smul, IsMinimal.dense_orbit, SubMulAction.map_ofFixingSubgroupUnion_bijective, faithfulSMul_iff, Subgroup.Commensurable.commensurator'_mem_iff, ModularGroup.exists_smul_mem_fd, Ideal.pointwise_smul_toAddSubgroup, hasDerivAtFilter_pi, Set.powersetCard.mulActionHom_singleton_bijective, Subgroup.properlyDiscontinuousSMul_of_tendsto_cofinite, isBlock_iff_smul_eq_of_nonempty, CategoryTheory.PreGaloisCategory.mulAction_naturality, Finset.card_smul_inter_smul, instErgodicSMulMulOppositeOfIsMulRightInvariant, Monoid.CoprodI.Word.mem_smul_iff, Matrix.toLpLin_symm_comp, instSMulCommClass_closedBall_closedBall_ball, alternatingGroup.isPretransitive_of_three_le_card, SubMulAction.ofFixingSubgroup_of_eq_bijective, Complex.UnitDisc.instSMulCommClass_circle_closedBall, Monoid.CoprodI.Word.smul_eq_of_smul, QuotientGroup.orbit_mk_eq_smul, Set.preimage_smulβ‚€, SubMulAction.SMulMemClass.subtype_injective, NonUnitalCStarAlgebra.toIsScalarTower, IsScalarTower.of_commMonoid, QuotientGroup.instContinuousConstSMul, Equiv.Perm.instIsPretransitive, eq_cosets_of_normal, Subgroup.transferFunction_apply, ModularForm.slash_def, ProperSMul.isProperMap_smul_pair_set, SubMulAction.smul_mem_iff', Finset.dens_smul_finset, hasDerivAt_finCons', Monoid.PushoutI.NormalWord.instFaithfulSMul_2, UpperHalfPlane.instContinuousGLSMul, mem_stabilizer_iff, isScalarTower_sphere_ball_ball, GradedMonoid.isScalarTower_right, continuousSMul_compHom, smul_uniformity, Module.Basis.orientation_unitsSMul, CategoryTheory.PreGaloisCategory.IsNaturalSMul.naturality, Finset.inv_smul_mem_iffβ‚€, Subsemiring.smul_sup, orbit_nonempty, Subgroup.mem_inv_pointwise_smul_iff, CategoryTheory.ActionCategory.homOfPair.val, CongruenceSubgroup.conj_cong_is_cong, LinearMap.BilinForm.toMatrix'_mul, AddSubgroup.pointwise_smul_le_iff, Set.powersetCard.coe_mulActionHom_compl, hasDerivAt_single, SubMulAction.not_mem_of_mem_ofFixingSubgroup, ModularGroup.im_T_inv_smul, Finset.mulETransformRight_snd, MeasureTheory.Measure.addHaarScalarFactor_domSMul, LinearMap.toMatrixβ‚‚'_complβ‚‚, IsPreprimitive.mk', AddSubmonoid.smul_mem_pointwise_smul_iff, orbitRel.Quotient.mapsTo_smul_orbit, Matrix.toLinAlgEquiv'_symm, SlashInvariantFormClass.norm_petersson_smul, MulDistribMulAction.toMonoidHomZModOfIsCyclic_apply, NonUnitalCommCStarAlgebra.toSMulCommClass, stabilizer_orbit_eq, AddSubgroup.mem_inv_pointwise_smul_iffβ‚€, Monoid.PushoutI.NormalWord.prod_smul, SubMulAction.val_preimage_orbit, smul_invOf_smul, absorbent_iff_inv_smul, continuous_const_smul_iffβ‚€, AddSubmonoid.pointwise_smul_le_pointwise_smul_iff, Filter.smul_tendsto_smul_iff, UpperHalfPlane.modular_T_zpow_smul, CFC.nnrpow_eq_nnrpow_prod, Metric.preimage_smul_ball, isPeriodicPt_smul_iff, SubMulAction.IsPreprimitive.isPreprimitive_ofFixingSubgroup_inter, NormedGroup.to_isIsometricSMul_left, OreLocalization.smul_div_one, MeasurableSet.const_smul, MulActionHom.oneEmbeddingMap_bijective, Subring.subset_pointwise_smul_iff, IsUnit.continuousAt_const_smul_iff, FreeMonoid.smul_def, QuotSMulTop.map_apply_mk, Matrix.cramer_smul, Finset.op_smul_stabilizer_of_no_doubling, ContMDiffWithinAt.clm_prodMap, smul_piβ‚€, subset_interior_smul, isMultiplyPreprimitive_ofStabilizer, Subgroup.conj_smul_eq_self_of_mem, FreeGroup.Orbit.duplicate, Finset.mem_inv_smul_finset_iffβ‚€, CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isGalois, Set.pairwise_disjoint_smul_iff, Set.smul_mem_smul_set_iff, Subring.instSMulCommClassSubtypeMemCenter_1, NumberField.InfinitePlace.mem_orbit_iff, invOf_smul_eq_iff, HNNExtension.NormalWord.of_smul_eq_smul, Module.Finite.instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule_1, totallyBounded_iff_subset_finite_iUnion_nhds_one, Set.mem_smul_set_iff_inv_smul_mem, IsUnit.measurable_const_smul_iff, Set.smul_Icc, Set.smul_set_subset_smul_set_iff, Subalgebra.continuousSMul, lowerClosure_smul, exists_bijective_map_powers, OrderIso.smulRightDual_symm_apply, Set.Infinite.smul_set, jacobi_cross, SubMulAction.orbitRel_of_subMul, DiscreteTiling.PlacedTile.coe_mk_coe, Finset.subset_smul_finset_iffβ‚€, UpperHalfPlane.pos_real_im, Subring.smul_mem_pointwise_smul, Subgroup.transferTransversal_apply'', Representation.ofMulDistribMulAction_apply_apply, WithConv.ofConv_smul, minimalPeriod_pos, Subsemiring.pointwise_smul_le_pointwise_smul_iffβ‚€, neg_cross, Projectivization.generalLinearGroup_smul_def, LocalizedModule.map_mk, MeasureTheory.tendsto_measure_smul_diff_isCompact_isClosed, isScalarTower_iff_smulCommClass_of_commMonoid, aestronglyMeasurable_const_smul_iffβ‚€, Monoid.CoprodI.Word.smul_def, smul_eq_iff_eq_invOf_smul, AddAut.mulLeft_apply_symm_apply, LinearMap.det_toMatrix', IsQuotientCoveringMap.isCancelSMul, CFC.sqrt_map_pi, Subgroup.smul_mem_pointwise_smul, SubMulAction.smul_mem_iff, smul_eq_iff_eq_inv_smul, Absorbs.univ, Equidecomp.trans_toPartialEquiv, Finset.smul_finset_interβ‚€, eq_inv_smul_iffβ‚€, Subgroup.relIndex_pointwise_smul, smul_zpow', ModularForm.SL_slash_apply, OreLocalization.oreDiv_smul_char, MeasureTheory.Measure.addHaarScalarFactor_smul_congr', Subalgebra.pointwise_smul_toSubsemiring, ThreeGPFree.smul_set, NormedSpace.ext_iff, smul_mem_fixedBy_iff_mem_fixedBy, SubMulAction.mem_ofFixingSubgroup_iff, EisensteinSeries.eisSummand_SL2_apply, AddSubgroup.le_pointwise_smul_iff, Subsemiring.continuousSMul, ContinuousMultilinearMap.piβ‚—α΅’_apply, TrivSqZeroExt.inl_mul_eq_smul, Commute.smul_left_iffβ‚€, DualNumber.algHom_ext'_iff, Matrix.range_diagonal, SubMulAction.isScalarTower, Subgroup.quotientEquivSigmaZMod_symm_apply, mem_fixingSubgroup_iff, SubMulAction.ofFixingSubgroup.isMultiplyPretransitive', MulActionHom.map_mem_fixedBy, Monoid.CoprodI.Word.rcons_eq_smul, UniformOnFun.continuousSMul_submodule_of_image_bounded, continuous_const_smul_iff, Group.preimage_smul_setβ‚›β‚—, Finset.smul_finset_sdiffβ‚€, ContinuousLinearMap.prodβ‚—_apply, orbit_eq_univ, SlashInvariantForm.slash_action_eqn', Subgroup.equivSMul_symm_apply_coe, Units.continuousSMul, Subgroup.smul_toLeftFun, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, LinearMap.toMatrixβ‚‚'_comp, NNReal.instSMulPosStrictMono, NonUnitalStarSubalgebra.prod_top, LinearPMap.closure_inverse_graph, instSMulCommClass_sphere_closedBall_ball, isOpenMap_smul_of_sigmaCompact, ContMDiffOn.clm_prodMap, Submonoid.pow_smul_mem_closure_smul, Matrix.SpecialLinearGroup.toLin'_symm_apply, MeasureTheory.smul_set_ae_le, LeftPreLieAlgebra.toIsScalarTower, Subsemiring.smul_closure, isScalarTower_closedBall_closedBall_ball, rightCoset_one, Set.disjoint_smul_set_left, LinearMap.toMatrix'_one, LieAlgebra.SpecialLinear.val_singleSubSingle, Subsemiring.pointwise_smul_le_iffβ‚€, SubMulAction.val_smul_of_tower, Matrix.cstar_norm_def, EMetric.preimage_smul_ball, Monoid.CoprodI.lift_word_ping_pong, ModularForm.coe_translate, Equiv.Perm.moves_in, MulAut.apply_faithfulSMul, Set.smul_set_subset_iffβ‚€, smul_ball_one, UpperHalfPlane.neg_smul, cross_cross_eq_smul_sub_smul', Set.disjoint_smul_set_right, Equiv.smulRight_apply, orbit_subgroup_one_eq_self, quotient_preimage_image_eq_union_mul, MeasureTheory.fundamentalInterior_smul, Matrix.toLinearMapRight'_one, Matrix.maxGenEigenspace_toLin'_diagonal_eq_eigenspace, zpow_period_add_smul, Set.Finite.absorbs_biInter, IsUniformGroup.to_uniformContinuousConstSMul, IwasawaStructure.is_conj, IsSMulRegular.one, SlashInvariantFormClass.petersson_smul, Subgroup.mem_pointwise_smul_iff_inv_smul_mem, smul_finprod_perm, AddCommGroup.smul_top_eq_top_of_divisibleBy_int, Submodule.topologicalClosure_iSup_map_single, period_eq_minimalPeriod, exists_disjoint_smul_of_isCompact, Subalgebra.pointwise_smul_toSubmodule, CategoryTheory.PreGaloisCategory.isPretransitive_of_isGalois, smul_lt_iff_lt_one_left, Matrix.toLpLin_apply, EMetric.smul_closedBall, properlyDiscontinuousSMul_iff_properSMul, Matrix.toLin'_apply, QuotSMulTop.map_id, RelHom.apply_faithfulSMul, KaehlerDifferential.mulActionBaseChange_smul_zero, Multiset.smul_prod, Units.smul_eq_mul, hasDerivAt_pi, GrpCat.SurjectiveOfEpiAuxs.g_apply_fromCoset, ModuleCat.sMulCommClass_mk, is_one_pretransitive_iff, hasDerivWithinAt_finCons, HNNExtension.NormalWord.prod_smul_empty, Finset.smul_prod_perm, stabilizer_smul_eq_right, OpenPartialHomeomorph.unitBallBall_symm_apply, card_orbit_mul_card_stabilizer_eq_card_group, AddSubgroup.le_pointwise_smul_iffβ‚€, Sylow.smul_le, one_smul_eq_id, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_fromCoset, instSMulCommClass_sphere_sphere_closedBall, UpperHalfPlane.contMDiff_smul, mem_rightCoset_iff, Matrix.l2_opNorm_def, Subgroup.smul_bot, AddSubgroup.pointwise_smul_def, AddSubmonoid.le_pointwise_smul_iffβ‚€, Matrix.toEuclideanLin_toLp, AddAut.smul_def, FixedPoints.mem_submonoid, IsFoelner.amenable, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, Ideal.coe_smul_primesOver, stronglyMeasurable_const_smul_iffβ‚€, IsBaseChange.finitePow, Equidecomp.symm_bijective, MeasureTheory.measure_union_inv_smul, Sylow.smul_def, ENNReal.smulCommClass_right, HasCompactSupport.comp_smul, Matrix.toLin'_toMatrix', ContinuousAlternatingMap.prodLIE_symm_apply, Subring.smul_mem_pointwise_smul_iff, Set.smul_set_subset_iff_subset_inv_smul_set, UpperHalfPlane.isometry_pos_mul, DomMulAct.mk_smul_monoidHom_apply, PosSMulMono.toPosSMulReflectLE, instIsLocalizedModuleLinearMapIdLocalizationLocalizedModuleMapOfFinitePresentation, closure_smul, instSMulCommClass_closedBall_closedBall_closedBall, smul_mem_fixedPoints_of_normal, SMul.smul_stabilizer_def, Set.smul_set_piβ‚€', isTopologicallyTransitive_iff, SetLike.instSMulCommClassSubtypeMem_1, CategoryTheory.ActionCategory.hom_as_subtype, Subgroup.le_pointwise_smul_iffβ‚€, injective, Monoid.PushoutI.NormalWord.summand_smul_def, Equidecomp.symm_toPartialEquiv, IsUnit.continuous_const_smul_iff, RightPreLieAlgebra.ext_iff, Subgroup.smulCommClass_left, Matrix.GeneralLinearGroup.IsParabolic.smul_eq_self_iff, Additive.addAction_isPretransitive, Matrix.kroneckerStarAlgEquiv_apply, minimalPeriod_eq_card, mem_stabilizer_finset', subsingleton_orbit_iff_mem_fixedPoints, Subsemiring.mem_pointwise_smul_iff_inv_smul_memβ‚€, AddSubgroup.pointwise_isCentralScalar, Projectivization.smul_mk, Real.volume_preserving_transvectionStruct, mulSupport_comp_inv_smulβ‚€, ContinuousAlternatingMap.piLinearEquiv_apply, Matrix.toLpLinAlgEquiv_symm_apply, MDifferentiableWithinAt.clm_prodMap, smul_iterate_apply, ModularGroup.SL_neg_smul, OpenPartialHomeomorph.unitBallBall_apply, Subring.pointwise_smul_toSubsemiring, LinearMap.toMatrix'_mulVec, IsBlockSystem.of_normal, IsTrivialBlock.smul_iff, SetLike.instIsScalarTowerSubtypeMem, Set.mem_smul_set_iff_inv_smul_memβ‚€, Set.smul_graphOn, smul_zpow_fixedBy_eq_of_commute, SubMulAction.isScalarTower', pretransitive_iff_unique_quotient_of_nonempty, approxOrderOf.smul_eq_of_mul_dvd, HNNExtension.NormalWord.t_pow_smul_eq_unitsSMul, Units.isScalarTower'_left, OreLocalization.smul_one_smul, MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot, Set.powersetCard.coe_mulActionHom_of_embedding, instSMulCommClass_sphere_sphere_ball, Flag.coe_smul, AddSubgroup.index_smul, IsBlock.of_orbit, Matrix.diagonal_comp_single, ofQuotientStabilizer_smul, measurable_const_smul_iffβ‚€, Finset.smul_univβ‚€, NonUnitalCStarAlgebra.toSMulCommClass, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, SubMulAction.image_inclusion, Finset.card_smul_finset, Finset.mulETransformLeft_snd, Monoid.PushoutI.NormalWord.instFaithfulSMul_1, IsUnit.smul, orbitRel.Quotient.orbit_eq_orbit_out, Set.smul_univβ‚€', mem_fixingSubmonoid_iff, instIsOrderedSMulOfIsOrderedMonoid, Subgroup.smul_diff', Regular.isPretransitive, Set.powersetCard.mulActionHom_of_embedding_surjective, SubMulAction.ofFixingSubgroup_insert_map_bijective, Subalgebra.pointwise_smul_toSubring, Set.smul_set_symmDiffβ‚€, IsUnit.preimage_smul_setβ‚›β‚—, InnerProductSpace.symm_toEuclideanLin_rankOne, LinearMap.BilinForm.toMatrix'_compRight, MulDistribMulAction.toMonoidHom_apply, Algebra.Extension.Cotangent.ker_mk, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, Finset.mulETransformLeft_fst, TrivSqZeroExt.mul_inl_eq_op_smul, Ideal.pointwise_smul_toAddSubmonoid, Complex.UnitDisc.instIsScalarTower_closedBall_closedBall, LinearPMap.IsClosable.graph_closure_eq_closure_graph, isBoundedLinearMap_prod_multilinear, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle', Subgroup.IsArithmetic.conj, Subgroup.instFaithfulSMulSubtypeMem, op_smul_mul, Subring.mem_inv_pointwise_smul_iffβ‚€, OreLocalization.oreDiv_one_smul, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, Matrix.rank_vecMulVec, Monoid.CoprodI.Word.equivPair_tail_eq_inv_smul, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_fromCoset', Subsemiring.mem_inv_pointwise_smul_iff, le_inv_smul_iff_of_pos, Quotient.smul_coe, hasDerivAt_finCons, upperClosure_smul, Complex.UnitDisc.coe_circle_smul, Set.powersetCard.coe_smul, IsOpen.iUnion_preimage_smul, CFC.nnrpow_map_prod, LinearMap.toMatrixRight'_comp, Submodule.isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul, smul_left_cancel_iff, Matrix.kroneckerStarAlgEquiv_symm_apply, smul_inv, IsUnit.isOpenMap_smul, MeasureTheory.integral_smul_eq_self, orbit_fixingSubgroup_compl_subset, UpperHalfPlane.modular_T_smul, measurable_const_smul_iff, Subgroup.pointwise_smul_toSubmonoid, Finset.smul_stabilizer_of_no_doubling, Submonoid.smul_bot, NonUnitalCommCStarAlgebra.toIsScalarTower, NNReal.instIsScalarTowerOfReal, IsCusp.smul, Set.smul_set_piβ‚€, KaehlerDifferential.mulActionBaseChange_smul_tmul, SimpleGraph.mem_ker_toLin'_lapMatrix_of_connectedComponent, Finset.smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves, isCancelSMul_iff_eq_one_of_smul_eq, mem_stabilizer_finset_iff_subset_smul_finset, ModularGroup.smul_eq_lcRow0_add, Submodule.span_singleton_group_smul_eq, Matrix.SpecialLinearGroup.toLin'_apply, Module.Finite.of_isComplemented_codomain, nhds_smul, Subgroup.mk_smul, IsUpperSet.smul_subset, CStarMatrix.norm_def, mem_orbit_self, AddSubmonoid.mem_smul_pointwise_iff_exists, IsSelfAdjoint.smul_iff, Equiv.Perm.OnCycleFactors.centralizer_smul_def, Measurable.measurableSMulβ‚‚_iterateMulAct, mapsTo_smul_orbit, AlgHom.mulLeftRightMatrix.comp_inv, SetLike.instSMulCommClassSubtypeMem_2, surjective, SubMulAction.IsPretransitive.isPretransitive_ofFixingSubgroup_inter, instIsPushoutFractionRingMvPolynomial_1, Set.subset_smul_set_iffβ‚€, int_smul_eq_zsmul, LinearMap.toMatrixAlgEquiv'_comp, smul_orbit_eq_orbit_smul, smul_mul', mem_fixedBy, LinearPMap.IsClosable.existsUnique, aemeasurable_const_smul_iffβ‚€, CStarMatrix.inner_toCLM_conjTranspose_right, SlashInvariantForm.T_zpow_width_invariant, AddSubmonoid.pointwise_smul_le_iffβ‚€, LieModule.toEnd_matrix, isBlock_subtypeVal, CStarMatrix.toCLM_apply_single_apply, MeasureTheory.QuotientMeasureEqMeasurePreimage.covolume_ne_top, SubMulAction.coe_pow, QuotientGroup.out_conj_pow_minimalPeriod_mem, UpperHalfPlane.mdifferentiable_smul, eq_inv_smul_iff, AddSubgroup.mem_pointwise_smul_iff_inv_smul_memβ‚€, ModularForm.slash_apply, Subsemiring.le_pointwise_smul_iffβ‚€, Subgroup.smul_coe, Action.FintypeCat.ofMulAction_apply, Module.FinitePresentation.linearEquivMapExtendScalars_symm_apply, IsClosed.rightCoset, continuousAt_const_smul_iff, smul_singleton_mem_nhds_of_sigmaCompact, IsUnit.continuousWithinAt_const_smul_iff, instIsPushoutFractionRingMvPolynomial, Finset.convolution_op_smul_eq_convolution_mul_inv, Representation.ofMulAction_def, smul_le_of_le_one_left, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero, instErgodicSMulOfIsMulLeftInvariant, UpperHalfPlane.petersson_slash, Matrix.spectrum_toLin', IsOpen.exists_smul_mem, Subgroup.smul_mem_pointwise_smul_iff, Function.End.apply_FaithfulSMul, IsClosed.smul

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”SemigroupAction.toSMul
Monoid.toSemigroup
toSemigroupAction
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
toSemigroupAction
β€”ext
one_smul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
toSemigroupAction
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”

MulDistribMulAction

Definitions

NameCategoryTheorems
toMulAction πŸ“–CompOp
72 mathmath: DomMulAct.smul_monoidHom_apply, Subgroup.smul_mem_pointwise_smul_iffβ‚€, ConjAct.fixedPoints_eq_center, smul_pow', Subgroup.equivSMul_apply_coe, Subgroup.coe_pointwise_smul, MulSemiringAction.toRingHom_apply, ConjAct.stabilizer_eq_centralizer, Submonoid.smul_mem_pointwise_smul_iffβ‚€, Subgroup.mem_pointwise_smul_iff_inv_smul_memβ‚€, toMulEquiv_apply, Submonoid.smul_mem_pointwise_smul, groupCohomology.isMulCoboundary₁_of_mem_coboundaries₁, Submonoid.mem_smul_pointwise_iff_exists, val_unitsCentralizerEquiv_apply_coe, Submonoid.mem_inv_pointwise_smul_iff, smul_div', Submonoid.coe_pointwise_smul, groupCohomology.isMulCoboundaryβ‚‚_of_mem_coboundariesβ‚‚, Multiset.smul_prod', Submonoid.smul_mem_pointwise_smul_iff, groupCohomology.isMulCocycle₁_of_mem_cocycles₁, smul_inv', Units.coe_smul, Rep.ofMulDistribMulAction_ρ_apply_apply, Representation.norm_ofMulDistribMulAction_eq, Subgroup.mem_inv_pointwise_smul_iffβ‚€, MulActionHom.coe_one, Subgroup.mem_smul_pointwise_iff_exists, mulAutArrow_apply_apply, groupCohomology.isMulCocycleβ‚‚_of_mem_cocyclesβ‚‚, MulActionHom.coe_mul, Submonoid.mem_inv_pointwise_smul_iffβ‚€, smul_algebraMap, mulAutArrow_apply_symm_apply, Submonoid.mem_pointwise_smul_iff_inv_smul_memβ‚€, toMulEquiv_symm_apply, val_unitsCentralizerEquiv_symm_apply_coe, IsPGroup.smul_mul_inv_trivial_or_surjective, ext_iff, Submonoid.mem_pointwise_smul_iff_inv_smul_mem, smul_finprod', Algebra.smul_units_def, Subgroup.smul_closure, smul_one, List.smul_prod', Units.coe_inv_smul, FixedPoints.mem_subgroup, algebraMap.coe_smul', Submonoid.smul_closure, AlgEquiv.smul_units_def, Finset.smul_prod', smul_mul, Subgroup.mem_inv_pointwise_smul_iff, toMonoidHomZModOfIsCyclic_apply, Representation.ofMulDistribMulAction_apply_apply, ConjAct.orbitRel_conjAct, Subgroup.smul_mem_pointwise_smul, smul_zpow', Subgroup.equivSMul_symm_apply_coe, Subgroup.mem_pointwise_smul_iff_inv_smul_mem, smul_finprod_perm, Finset.smul_prod_perm, FixedPoints.mem_submonoid, ConjClasses.card_carrier, DomMulAct.mk_smul_monoidHom_apply, Subgroup.nat_card_centralizer_nat_card_stabilizer, toMonoidHom_apply, smul_mul', Subgroup.centralizer_eq_comap_stabilizer, Subgroup.smul_coe, Subgroup.smul_mem_pointwise_smul_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
toMulAction
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
toMulAction
β€”ext
smul_mul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
toMulAction
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
smul_one πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
toMulAction
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”

MulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
smul_eq_mul_unop πŸ“–mathematicalβ€”MulOpposite
Mul.toSMulMulOpposite
unop
β€”β€”

SMul

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
3 mathmath: comp.smulCommClass', comp.smulCommClass, comp.isScalarTower

SMul.comp

Definitions

NameCategoryTheorems
smul πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
SMul.comp
β€”smul_assoc
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
SMul.comp
β€”SMulCommClass.smul_comm
smulCommClass' πŸ“–mathematicalβ€”SMulCommClass
SMul.comp
β€”SMulCommClass.smul_comm

SMulCommClass

Theorems

NameKindAssumesProvesValidatesDepends On
of_commMonoid πŸ“–mathematicalβ€”SMulCommClassβ€”one_smul
smul_assoc
smul_comm
smulCommClass_self
of_mul_smul_one πŸ“–mathematicalMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
SMulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”smul_eq_mul
mul_assoc
op_left πŸ“–mathematicalβ€”SMulCommClass
MulOpposite
β€”IsCentralScalar.unop_smul_eq_smul
smul_comm
op_right πŸ“–mathematicalβ€”SMulCommClass
MulOpposite
β€”IsCentralScalar.unop_smul_eq_smul
smul_comm
smul_comm πŸ“–β€”β€”β€”β€”β€”

SMulDistribClass

Theorems

NameKindAssumesProvesValidatesDepends On
smul_distrib_smul πŸ“–β€”β€”β€”β€”β€”

Semigroup

Theorems

NameKindAssumesProvesValidatesDepends On
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
toMul
β€”mul_assoc

SemigroupAction

Definitions

NameCategoryTheorems
toSMul πŸ“–CompOp
1771 mathmath: AddSubmonoid.pointwise_smul_le_pointwise_smul_iffβ‚€, MulAction.IsPreprimitive.of_isTrivialBlock_of_notMem_fixedPoints, Matrix.l2_opNorm_toEuclideanCLM, MulAction.Quotient.coe_smul_out, units_inv_smul, LeftPreLieAlgebra.toSMulCommClass, MulAction.compHom_smul_def, DoubleCoset.doubleCoset_union_rightCoset, DomMulAct.smul_monoidHom_apply, aestronglyMeasurable_const_smul_iff, continuousSMul_sphere_ball, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_fromCoset, MulAction.pow_add_period_smul, IsSMulRegular.of_mul_eq_one, instIsOrderedCancelSMulOfIsOrderedCancelMonoid, MulAction.isPreprimitive_of_fixingSubgroup_empty_iff, isHomeomorph_smulβ‚€, Homeomorph.smulOfNeZero_symm_apply, Subgroup.smul_mem_pointwise_smul_iffβ‚€, CategoryTheory.PreGaloisCategory.mulAction_def, interior_smulβ‚€, ModularGroup.SLOnGLPos_smul_apply, dot_self_cross, Subgroup.pointwise_smul_le_pointwise_smul_iff, Matrix.toLin'_symm, MeasureTheory.smulInvariantMeasure_iterateMulAct, NormedGroup.to_isIsometricSMul_right, LinearMap.toMatrixAlgEquiv'_mul, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, IsUnit.isSMulRegular, properSMul_iff, Monoid.PushoutI.NormalWord.base_smul_def, IsLowerSet.smul, smul_pow', MulAction.IsTrivialBlock.smul, Set.smul_set_symmDiff, instProperConstSMulOfContinuousConstSMul, Finset.smul_finset_subset_smul_finset_iff, mul_ball, MeasurableEquiv.smul_apply, Subgroup.equivSMul_apply_coe, Finset.smul_finset_sdiff, AffineMap.coe_smul, Metric.smul_ball, FreeMonoid.ofList_smul, ErgodicSMul.of_aestabilizer, MulAction.isTopologicallyTransitive_iff_dense_iUnion_preimage, MeasureTheory.measure_sdiff_inv_smul, MeasurableEquiv.coe_smulβ‚€, IsClosed.smul_of_ne_zero, Subgroup.coe_pointwise_smul, Mathlib.Tactic.Module.NF.eval_algebraMap, NonUnitalCStarAlgebra.toStarModule, Finset.inv_smul_mem_iff, MulAction.IsBlock.of_subset, HNNExtension.NormalWord.prod_group_smul, Subring.pointwise_smul_def, Complex.UnitDisc.instIsScalarTower_circle, AddSubgroup.zero_smul, TrivSqZeroExt.lift_inlAlgHom_inrHom, MulSemiringAction.toRingHom_apply, Polynomial.Gal.smul_def, MulAction.nonempty_orbit, Matrix.toLinearMapRight'_mul, Equiv.Perm.smul_def, Filter.smul_tendsto_smul_iffβ‚€, MonoidHom.preimage_smul_setβ‚›β‚—, Rep.diagonalSuccIsoFree_inv_hom_single, mem_own_rightCoset, continuousSMul_sphere_sphere, Equiv.Perm.Basis.toCentralizer_equivariant, punctured_nhds_smul, support_comp_inv_smulβ‚€, Matrix.spectrum_toEuclideanLin, Matrix.iSup_eigenspace_toLin'_diagonal_eq_top, SubMulAction.ofStabilizer_carrier, Matrix.cstar_nnnorm_def, Submonoid.smul_mem_pointwise_smul_iffβ‚€, MeasureTheory.Subgroup.smulInvariantMeasure, LinearMap.mapMatrixLinear_apply, Filter.mem_absorbing, smul_mem_nhds_smulβ‚€, SubMulAction.ofFixingSubgroup_equivariantMap_injective, Matrix.toLinearMapβ‚‚'_comp, Sylow.pointwise_smul_def, kroneckerTMulAlgEquiv_symm_single_tmul, smul_zpow, UpperHalfPlane.re_smul, Subgroup.pointwise_smul_subset_iff, Action.ofMulAction_apply, RelIso.smul_def, OrderIso.smulRight_apply, Set.smul_graphOn_univ, Function.Embedding.coe_smul, OnePoint.isBoundedAt_iff_exists_SL2Z, alternatingGroup.isPreprimitive_of_three_le_card, SubMulAction.fixingSubgroup_smul_eq_fixingSubgroup_map_conj, Ideal.coe_smul_primesOver_mk_eq_map_galRestrict, MulAction.isPretransitive_iff_orbit_eq_univ, Function.Embedding.smul_apply, LocalizedModule.restrictScalars_map_eq, Subgroup.mem_pointwise_smul_iff_inv_smul_memβ‚€, MeasureTheory.addHaarScalarFactor_smul_inv_eq_distribHaarChar, HNNExtension.NormalWord.group_smul_toList, Subring.instSMulCommClassSubtypeMemCenter, MulAction.set_mem_fixedBy_iff, CategoryTheory.FintypeCat.Action.pretransitive_of_isConnected, Subgroup.subset_pointwise_smul_iff, OreLocalization.oreDiv_eq_iff, inv_smul_smulβ‚€, Units.isSMulRegular, Module.Ray.neg_units_smul, Set.infinite_smul_set, IsCusp.smul_of_mem, Finset.inv_smul_finset_distrib, AddSubgroup.smul_mem_pointwise_smul_iff, isQuotientCoveringMap_iff, Finset.doubling_lt_three_halves, Set.mem_smul_set_inv, smulMulHom_apply, Subgroup.exists_smul_eq, CongruenceSubgroup.exists_Gamma_le_conj', UpperHalfPlane.tendsto_smul_atImInfty, Set.powersetCard.isPretransitive, NumberField.mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, MulAction.ofQuotientStabilizer_mem_orbit, Subgroup.conj_smul_subgroupOf, IsCompact.closedBall_mul, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, MulAction.Supports.smul, inv_smul_eq_iff, QuotSMulTop.equivTensorQuot_naturality, MeasureTheory.pairwise_disjoint_fundamentalInterior, IsClosed.smul_left_of_isCompact, AddSubgroup.mem_inv_pointwise_smul_iff, Complex.UnitDisc.instSMulCommClass_closedBall_circle, Units.smul_coe, CongruenceSubgroup.conjGL_coe, Dense.smul, Module.Basis.groupSMul_span_eq_top, mem_leftCoset_iff, cross_cross, Complex.UnitDisc.instSMulCommClass_closedBall_left, Subsemiring.mem_smul_pointwise_iff_exists, Matrix.spectrum_toLpLin, EMetric.smul_ball, Submodule.top_eq_ofList_cons_smul_iff, UpperHalfPlane.im_smul_eq_div_normSq, AddSubgroup.mem_inertia, OreLocalization.nsmul_eq_nsmul, UpperHalfPlane.specialLinearGroup_apply, MulAction.smul_mem_orbit_smul, Set.smul_set_inter, instSMulCommClass_sphere_sphere_sphere, Sylow.coe_smul, NumberField.InfinitePlace.exists_smul_eq_of_comap_eq, DoubleCoset.doubleCoset_union_leftCoset, AddSubmonoid.le_pointwise_smul_iff, MeasureTheory.Measure.domSMul_apply, isClosedMap_smul_of_ne_zero, Equiv.Perm.exists_mem_stabilizer_smul_eq, IsGaloisGroup.mulEquivAlgEquiv_apply_symm_apply, Module.FinitePresentation.exists_notMem_bijective, Set.mem_inv_smul_set_iffβ‚€, Set.finite_smul_set, ContinuousAlternatingMap.piLIE_apply_apply, Set.preimage_smul_invβ‚€, Subsemiring.smul_mem_pointwise_smul_iff, SubMulAction.ofFixingSubgroup_of_inclusion_injective, ENNReal.smul_def, cross_self, MulAction.mem_aestabilizer, Set.smul_set_interβ‚€, Subgroup.center.smulCommClass_right, MulAction.quotient_out_smul_fixedPoints, Set.smul_set_subset_smul_set_iffβ‚€, ContinuousMultilinearMap.piLinearEquiv_symm_apply, MulDistribMulAction.toMulEquiv_apply, Submonoid.smul_mem_pointwise_smul, Equidecomp.restr_refl_symm, Module.Ray.units_smul_of_neg, Matrix.intrinsicStar_toLin', RelEmbedding.smul_def, InnerProductSpace.smul_left, MulAction.zpow_smul_mod_minimalPeriod, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar_inv, MulAction.IsQuasiPreprimitive.isPretransitive_of_normal, MeasureTheory.mem_fundamentalInterior, Finset.smul_finset_inter, MeasureTheory.mem_fundamentalFrontier, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_infinity, MulAction.QuotientAction.inv_mul_mem, Finset.smul_finset_univ, ModularGroup.one_lt_normSq_T_zpow_smul, QuadraticMap.toMatrix'_comp, Set.powersetCard.mem_mulActionHom_compl, OnePoint.smul_infty_eq_self_iff, HNNExtension.NormalWord.t_smul_eq_unitsSMul, SimpleGraph.card_connectedComponent_eq_finrank_ker_toLin'_lapMatrix, MulAction.isPreprimitive_of_is_two_pretransitive, SubMulAction.subset_coe_pow, Finset.subset_smul_finset_iff, cfcβ‚™Hom_nnreal_eq_restrict, OreLocalization.smul_cancel', unitary.smul_mem_of_mem, MulAction.isBlock_iff_smul_eq_of_mem, SubMulAction.nat_card_ofStabilizer_add_one_eq, groupCohomology.isMulCoboundary₁_of_mem_coboundaries₁, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, absorbent_univ, mulSupport_comp_inv_smul, cfcβ‚™_map_pi, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_infinity, Representation.ofMulAction_apply, RightPreLieAlgebra.toIsScalarTower, hasDerivWithinAt_pi, LinearMap.spectrum_toMatrix', Real.smul_map_diagonal_volume_pi, Submonoid.pointwise_smul_le_pointwise_smul_iffβ‚€, AlgHom.mulLeftRightMatrix.inv_comp, Submonoid.mem_smul_pointwise_iff_exists, one_leftCoset, KaehlerDifferential.quotKerTotalEquiv_symm_comp_D, Unitary.smul_mem, QuotSMulTop.equivTensorQuot_naturality_mk, dot_cross_self, MeasureTheory.fundamentalFrontier_smul, Subring.mem_pointwise_smul_iff_inv_smul_mem, Matrix.toLpLin_mul_same, MulAction.mem_orbit_smul, jacobiTheta_T_sq_smul, Submonoid.instMeasurableSMul, DistribMulAction.smul_add, MulAction.orbit_subgroup_subset, Subalgebra.coe_pointwise_smul, MulAction.smul_zpow_movedBy_eq_of_commute, SlashInvariantForm.quotientFunc_smul, IsUnit.tendsto_const_smul_iff, Equiv.swap_smul_involutive, NonUnitalSubalgebra.prod_inf_prod, CStarMatrix.toCLM_injective, Submonoid.pointwise_smul_le_pointwise_smul_iff, ModularGroup.sl_moeb, MulAction.is_one_preprimitive_iff, MeasureTheory.Measure.IsAddHaarMeasure.domSMul, Subgroup.smulCommClass_right, NumberField.InfinitePlace.smul_apply, Finset.inv_op_smul_finset_distrib, rightCoset_eq_iff, MulAction.le_stabilizer_iff_smul_le, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, MulAut.smul_def, absorbs_inter, MeasureTheory.measure_smul_eq_zero_iff, Subring.mem_pointwise_smul_iff_inv_smul_memβ‚€, IsUnit.stronglyMeasurable_const_smul_iff, LinearMap.rank_diagonal, MulAction.bijective, QuotSMulTop.map_comp_mkQ, MulAction.BlockMem.coe_top, OnePoint.isZeroAt_iff_exists_SL2Z, AlternatingGroup.isPreprimitive_of_three_le_card, Finset.prod_smul, lt_inv_smul_iff_of_pos, Matrix.toEuclideanLin_apply, MulAction.orbitRel.Quotient.mem_subgroup_orbit_iff', LinearIndependent.group_smul_iff, LinearMap.toMatrixAlgEquiv'_id, MulAction.toPerm_apply, smul_rayOfNeZero, UpperHalfPlane.glPos_smul_def, Subgroup.instCovariantClassHSMulLe, IsCusp.of_isFiniteRelIndex_conj, Finset.smul_finset_subset_smul_finset_iffβ‚€, Metric.smul_closedEBall, UpperHalfPlane.coe_pos_real_smul, isScalarTower_closedBall_closedBall_closedBall, Matrix.liftLinear_singleLinearMap, NonUnitalSubalgebra.prod_top, ModularGroup.coe_T_zpow_smul_eq, smul_uniformityβ‚€, SubMulAction.map_ofFixingSubgroupUnion_def, AddSubmonoid.smul_bot, isScalarTower_sphere_closedBall_closedBall, Set.powersetCard.faithfulSMul, LocalizedModule.divBy_mul_by, Submodule.pointwise_smul_toAddSubgroup, LinearMap.toMatrixβ‚‚'_compl₁₂, LieAlgebra.SpecialLinear.singleSubSingle_add_singleSubSingle, LinearMap.prodEquiv_apply, CStarMatrix.norm_def', MulActionWithZero.zero_smul, Representation.ofMulAction_single, Finset.mulDysonETransform_snd, LocalizedModule.map_surjective, AddSubmonoid.smul_sup, SubMulAction.ofStabilizer.isMultiplyPretransitive_iff, Matrix.toLin'_mul_apply, Complex.UnitDisc.coe_smul_circle, MulAction.Quotient.smul_mk, UpperHalfPlane.denom_cocycle_Οƒ, Submonoid.mem_inv_pointwise_smul_iff, MeasureTheory.eventuallyConst_smul_set_ae, SkewMonoidAlgebra.comapSMul_def, Finset.smul_mem_smul_finset_iff, CliffordAlgebra.foldr'Aux_foldr'Aux, LieAdmissibleAlgebra.toSMulCommClass, MulAction.isBlock_iff_smul_eq_or_disjoint, Finsupp.comapSMul_single, CStarMatrix.inner_toCLM_conjTranspose_left, LinearMap.toMatrix'_toLin', MulAction.op_smul_set_stabilizer_subset, Subsemiring.smul_mem_pointwise_smul, IsUnit.aemeasurable_const_smul_iff, Sylow.smul_eq_iff_mem_normalizer, Subgroup.pointwise_smul_le_pointwise_smul_iffβ‚€, Finset.smul_mem_smul_finset_iffβ‚€, MulAction.pow_smul_mod_minimalPeriod, TrivSqZeroExt.lift_comp_inrHom, NNReal.instPosSMulStrictMono, smul_lt_of_lt_one_left, MulAction.isBlock_top, orbit_subgroup_eq_self_of_mem, CategoryTheory.End.smul_left, Subsemiring.pointwise_smul_toAddSubmonoid, instIsPushoutFractionRingPolynomial_1, OrderIso.smulRightDual_apply, isCoprime_group_smul_right, ModularGroup.tendsto_abs_re_smul, Rep.diagonalSuccIsoFree_inv_hom_single_single, MDifferentiableAt.clm_prodMap, smul_div', Matrix.toAlgEquiv_kroneckerStarAlgEquiv, Polynomial.instSMulCommClassElemRootSet, Set.exists_smul_inter_smul_subset_smul_inv_mul_inter_inv_mul, Module.add_smul, MulAction.ofFixingSubgroup.isMultiplyPreprimitive, smul_inv_smulβ‚€, CategoryTheory.actionAsFunctor_map, IsLocalizedModule.map_surjective_iff_localizedModuleMap_surjective, Complex.UnitDisc.instIsScalarTower_circle_circle, Subgroup.Normal.conj_smul_eq_self, Monoid.PushoutI.NormalWord.base_smul_eq_smul, closure_smulβ‚€', Set.smul_univβ‚€, Finset.smul_inv_mul_eq_inv_mul_opSMul, Pi.intrinsicStar_comul_commSemiring, IsUnit.inv_smul, Matrix.det_kroneckerMapBilinear, Monoid.PushoutI.NormalWord.base_smul_def', Finset.smul_finset_symmDiff, SlashInvariantForm.coe_translate, Localization.algHom_ext_iff, Matrix.SpecialLinearGroup.toLin'_symm_to_linearMap, Finset.smul_finset_univβ‚€, measurableEmbedding_const_smulβ‚€, Matrix.vecMulBilin_apply, HasCompactMulSupport.comp_smul, cross_anticomm, Subgroup.Normal.conjAct, ModularGroup.exists_max_im, Finite.finite_mulAction_orbit, SubMulAction.ofStabilizer.isPretransitive_iff, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, Subsemiring.smul_bot, MulAction.minimalPeriod_eq_one_iff_fixedBy, DistribMulAction.toLinearEquiv_symm_apply, cross_cross_eq_smul_sub_smul, Real.map_matrix_volume_pi_eq_smul_volume_pi, TrivSqZeroExt.algHom_ext'_iff, MulAction.index_stabilizer, Submonoid.coe_pointwise_smul, MulAction.instIsPretransitiveElemOrbit_1, LocalizedModule.map_injective, Monoid.CoprodI.Word.prod_smul, NumberField.InfinitePlace.smul_eq_comap, IsOpen.iUnion_smul, Complex.UnitDisc.instSMulCommClass_circle_left, Matrix.toAlgEquiv_kroneckerTMulStarAlgEquiv, Subgroup.smul_leftQuotientEquiv, groupCohomology.isMulCoboundaryβ‚‚_of_mem_coboundariesβ‚‚, MulAction.mem_orbit_symm, KaehlerDifferential.mulActionBaseChange_smul_add, Subgroup.Commensurable.commensurable_conj, NumberField.InfinitePlace.smul_mk, SubMulAction.stabilizer_of_subMul, isCusp_SL2Z_iff', Subgroup.pointwise_smul_def, coeSubmodule_differentIdeal_fractionRing, QuotSMulTop.map_surjective, Ideal.Fiber.lift_residueField_surjective, Subgroup.conjAct_pointwise_smul_iff, IsCompact.exists_finite_cover_smul, Set.smul_set_univβ‚€, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar, Metric.preimage_smul_closedEBall, IsFoelner.tendsto_meas_smul_symmDiff, nhds_smulβ‚€, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, Matrix.isNilpotent_toLin'_iff, unitary.coe_smul, RegularWreathProduct.smul_def, ModularGroup.im_T_smul, MeasureTheory.measure_inv_smul_sdiff, smul_ball'', Finset.mul_mem_smul_finset_iff, MulAction.orbitRel.Quotient.mem_subgroup_orbit_iff, Finset.mem_inv_smul_finset_iff, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, MulAction.isInvariantBlock_iff_isFixedBlock, ProperSMul.isProperMap_smul_pair, Matrix.toLinearEquiv'_symm_apply, smul_closedBall_one, LinearMap.BilinForm.mul_toMatrix'_mul, Subring.pointwise_smul_toAddSubgroup, OnePoint.smul_some_eq_ite, Subring.coe_pointwise_smul, MulAction.IsBlock.orbit_of_normal, IsScalarTower.of_smul_one_mul, CategoryTheory.PreGaloisCategory.toAut_hom_app_apply, InnerProductGeometry.norm_toLp_symm_crossProduct, mem_closure_isSwap, WithConv.toConv_smul, SubMulAction.mem_mul, Set.OrdConnected.smul, Set.powersetCard.isPretransitive_alternatingGroup, FreeMonoid.of_smul, Set.smul_set_pi, Set.Finite.absorbs_sInter, Multiset.smul_prod', CFC.sqrt_map_prod, AffineMap.smul_linear, Subgroup.leftCoset_cover_const_iff_surjOn, SubMulAction.fixingSubgroup_of_insert, MeasureTheory.Measure.addHaarScalarFactor_smul_congr, MonoidHom.smulOneHom_apply, Matrix.det_smul_of_tower, NonarchimedeanGroup.exists_openSubgroup_separating, Module.Ray.linearEquiv_smul_eq_map, Submonoid.smul_mem_pointwise_smul_iff, ball_mul, SubMulAction.ofFixingSubgroup_carrier, Homeomorph.smul_symm_apply, IsCompact.div_closedBall, MatrixEquivTensor.toFunBilinear_apply, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, groupCohomology.isMulCocycle₁_of_mem_cocycles₁, Subgroup.smul_diff_smul', QuotientGroup.eq_class_eq_leftCoset, PosSMulMono.nnrat_of_rat, HNNExtension.NormalWord.prod_smul, Monoid.PushoutI.NormalWord.instFaithfulSMul, StarMul.toStarModule, IntermediateField.continuousSMul, units_smul_eq_self_iff, Matrix.toLpLin_symm_pow, TensorProduct.prodLeft_tmul, denseRange_smul, units_smul_eq_neg_iff, MulAction.smul_inv_mem_fixedBy_iff_mem_fixedBy, Matrix.linfty_opNNNorm_toMatrix, MulAction.disjoint_image_image_iff, Subgroup.Commensurable.commensurator_mem_iff, MonoidHom.transfer_def, Finset.smul_univ, Matrix.toEuclideanCLM_toLp, approxOrderOf.smul_subset_of_coprime, isClosedMap_smul, MulAction.isPreprimitive_ofFixingSubgroup_conj_iff, ProperSMul.toContinuousSMul, cross_anticomm', smul_inv', ENNReal.instIsScalarTowerNNReal, Set.disjoint_smul_set, Pi.intrinsicStar_comul, MeasureTheory.innerRegular_map_smul, NumberField.InfinitePlace.isUnramified_smul_iff, Homeomorph.smulOfNeZero_apply, Units.coe_smul, Projectivization.cross_mk_of_cross_ne_zero, Matrix.toLpLin_one, Monoid.PushoutI.NormalWord.prod_summand_smul, CFC.nnrpow_map_pi, MulAction.toFun_apply, SubMulAction.mem_fixingSubgroup_insert_iff, isCancelSMul_iff_stabilizer_eq_bot, OreLocalization.expand', CategoryTheory.PreGaloisCategory.IsFundamentalGroup.transitive_of_isGalois, Algebra.PreSubmersivePresentation.aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, TensorProduct.prodLeft_symm_tmul, EisensteinSeries.G2_S_transform, smul_coe_set, ModularGroup.SL_to_GL_tower, QuotientGroup.univ_eq_iUnion_smul, Matrix.piLp_ofLp_toEuclideanLin, OnePoint.map_smul, MeasureTheory.Measure.isHaarMeasure_map_smul, Submonoid.smul_sup, lieEquivMatrix'_apply, leftCoset_eq_iff, Set.smul_mem_smul_set_iffβ‚€, Homeomorph.smul_apply, SimpleGraph.linearIndependent_lapMatrix_ker_basis_aux, continuousSMul_closedBall_ball, Sylow.orbit_eq_top, MulSemiringAction.toAlgEquiv_symm_apply, Ideal.Quotient.smul_top, Submonoid.le_pointwise_smul_iffβ‚€, MulAction.smul_subset_of_set_mem_fixedBy, Commute.smul_left_iff, LinearMap.minpoly_toMatrix', Submodule.pointwise_smul_toAddSubmonoid, List.smul_prod, isScalarTower_sphere_sphere_sphere, MulAction.toPerm_symm_apply, jacobiTheta_S_smul, MulAction.isPretransitive_iff_base, smul_smul, RightCancelMonoid.faithfulSMul, RightPreLieAlgebra.toSMulCommClass, MulAction.isCoatom_stabilizer_iff_preprimitive, Subgroup.leftTransversals.smul_diff_smul, GrpCat.SurjectiveOfEpiAuxs.fromCoset_eq_of_mem_range, ModularGroup.re_T_smul, IsFoelner.mean_smul_eq_mean_smul, NNReal.smulCommClass_left, OreLocalization.expand, SubMulAction.stabilizer_of_subMul.submonoid, MulAction.smul_orbit, LinearMap.prodEquiv_symm_apply, absorbs_iInter, Subring.mem_inv_pointwise_smul_iff, Matrix.toLpLin_pow, Module.ext_iff, Set.ncard_smul_set, CongruenceSubgroup.IsArithmetic.conj, DiscreteTiling.PlacedTile.mem_inv_smul_iff_smul_mem, Matrix.isUnit_toLin'_iff, Subalgebra.instCovariantClassHSMulLe, LinearMap.CompatibleSMul.units, AddSubmonoid.mem_pointwise_smul_iff_inv_smul_mem, Polynomial.adjSylvester_comp_sylveserMap, Ideal.ResidueField.liftₐ_comp_toAlgHom, HNNExtension.NormalWord.smul_ofGroup, Submonoid.pointwise_smul_le_iffβ‚€, Matrix.toLin'_mul, hasDerivAt_update, CongruenceSubgroup.Gamma_cong_eq_self, UpperHalfPlane.coe_smul_of_det_pos, MulAction.ext_iff, AddSubmonoid.pointwise_isCentralScalar, op_smul_coe_set, SubMulAction.inclusion.toFun_eq_coe, Complex.UnitDisc.coe_closedBall_smul, Matrix.ofLp_toLpLin, div_ball, MulAction.zpow_mod_period_smul, smul_eq_self_of_preimage_zpow_eq_self, Rep.ofMulDistribMulAction_ρ_apply_apply, MeasureTheory.MeasurePreserving.smulInvariantMeasure_iterateMulAct, OrderIso.smulRight_symm_apply, isCoprime_group_smul_left, IsQuotientCoveringMap.apply_eq_iff_mem_orbit, MDifferentiableOn.clm_prodMap, Subgroup.pointwise_isCentralScalar, LinearMap.det_toLin', Monoid.CoprodI.Word.mem_smul_iff_of_ne, MulActionWithZero.smul_zero, CategoryTheory.PreGaloisCategory.toAut_surjective_isGalois, Monoid.CoprodI.Word.of_smul_def, Representation.norm_ofMulDistribMulAction_eq, Matrix.kroneckerMapBilinear_apply_apply, MulAction.orbit.eq_or_disjoint, NumberField.InfinitePlace.smul_coe_apply, Finite.to_properlyDiscontinuousSMul, Subgroup.smul_apply_eq_smul_apply_inv_smul, Subsemiring.pointwise_central_scalar, Matrix.toLinearMapRight'_mul_apply, interior_smul, Finset.smul_finset_subset_iffβ‚€, MulAction.oneEmbedding_isPretransitive_iff, measurableSMulβ‚‚_iterateMulAct, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, Subring.pointwise_smul_subset_iff, unitary.smul_mem, SubMulAction.disjoint_val_image, UpperHalfPlane.modular_S_smul, MulAction.isBlock_subgroup', instSMulCommClass_sphere_closedBall_closedBall, Subgroup.mem_inv_pointwise_smul_iffβ‚€, kroneckerTMulLinearEquiv_one, ModularGroup.re_T_inv_smul, ContinuousMultilinearMap.prodL_apply, Subgroup.normalCore_eq_iInf_conjAct, preimage_smul_setβ‚›β‚—_of_isUnit_isUnit, Metric.preimage_smul_eball, Sylow.smul_eq_of_normal, hasEigenvector_toLin'_diagonal, MulAction.mem_stabilizer_finset, IsCompact.mul_closedBall, MulAction.IsFixedBlock.orbit, LinearMap.toMatrixAlgEquiv'_apply, CongruenceSubgroup.isArithmetic_conj_SL2Z, Module.Ray.units_smul_of_pos, arrowAction_smul, MulAction.mem_fixedPoints, Orientation.map_eq_det_inv_smul, LinearMap.toMatrix'_algebraMap, IsUnit.smul_mem_nhds_smul_iff, MulAction.IsPartition.of_orbits, Cardinal.mk_smul_set, LocalizedModule.coe_map_eq, HNNExtension.NormalWord.unitsSMul_one_group_smul, SimpleGraph.top_le_span_range_lapMatrix_ker_basis_aux, Set.mem_invOf_smul_set, MulAction.stabilizer_smul_eq_stabilizer_map_conj, Monoid.PushoutI.NormalWord.prod_base_smul, Finset.smul_finset_symmDiffβ‚€, AddSubmonoid.smul_mem_pointwise_smul, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, ValuationSubring.pointwise_smul_toSubring, SubMulAction.nat_card_ofStabilizer_eq, Unitary.smul_mem_of_mem, instIsLeftCancelSMul_1, RootPairing.GeckConstruction.span_range_h'_eq_top, IsOpen.dense_iUnion_preimage_smul, continuousSMul_sphere_closedBall, MulAction.coe_quotient_smul_fixedPoints, OreLocalization.zsmul_eq_zsmul, AddSubgroup.pointwise_smul_le_iffβ‚€, Monoid.CoprodI.Word.cons_eq_smul, MulAction.smul_orbit_subset, smul_iterate, isQuotientCoveringMap_iff_isCoveringMap_and, Submonoid.instSMulCommClassSubtypeMemCenter_1, Subring.mem_smul_pointwise_iff_exists, MulActionHom.coe_one, Matrix.toLin'_reindex, hasStrictDerivAt_finCons', isScalarTower_closedBall_ball_ball, LinearMap.BilinForm.toMatrix'_compLeft, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_auxβ‚‚, hasStrictDerivAt_finCons, MulAction.IsTrivialBlock.isBlock, Set.subset_smul_set_iff, MulAction.orbitRel.Quotient.orbit.coe_smul, ContinuousMultilinearMap.piLinearEquiv_apply, GradedMonoid.smulCommClass_right, MulAction.orbit_smul_subset, inv_smul_smul, UpperHalfPlane.im_smul, MulAction.mem_stabilizer_set_iff_subset_smul_set, IsCompact.closedBall_div, NumberField.InfinitePlace.isComplex_smul_iff, AffineMap.isCentralScalar, ball_div, DiscreteTiling.PlacedTile.coe_mk_mk, OnePoint.IsZeroAt.smul_iff, SkewMonoidAlgebra.comapSMul_single, instIsCancelSMul, LinearMap.toMatrix'_apply, ModularGroup.normSq_S_smul_lt_one, SubMulAction.inclusion_injective, Matrix.toLpLin_toLp, ContinuousLinearMap.prodMapL_apply, Subsemiring.smul_mem_pointwise_smul_iffβ‚€, map_equiv_traceDual, HNNExtension.NormalWord.instFaithfulSMul_1, MulAction.isPretransitive_compHom, UpperHalfPlane.coe_smul, MulAction.pow_period_smul, MeasureTheory.measure_symmDiff_inv_smul, MulAction.smul_set_stabilizer_subset, ModularGroup.exists_row_one_eq_and_min_re, AddSubmonoid.pointwise_smul_le_iff, NNRat.instContinuousSMulOfIsScalarTowerOfRat, Unitary.coe_smul, SubMulAction.mem_orbit_subMul_iff, Matrix.IntrinsicStar.isSelfAdjoint_toLin'_iff, MulAction.mem_stabilizerSubmonoid_iff, Subgroup.mem_smul_pointwise_iff_exists, HNNExtension.NormalWord.group_smul_def, RelEmbedding.apply_faithfulSMul, Equiv.Perm.applyFaithfulSMul, MulAction.image_inter_image_iff, CStarMatrix.toCLM_apply_single, Subring.smul_bot, continuousWithinAt_const_smul_iff, SubMulAction.val_image_orbit, isCoprime_group_smul, Circle.instContinuousSMul, isHomeomorph_smul, mulAutArrow_apply_apply, QuotSMulTop.equivQuotTensor_naturality, ArithmeticFunction.sum_divisorsAntidiagonal_eq_sum_divisors, LinearMap.toMatrix'_symm, MulAction.isPretransitive_quotient, smul_inv_smul, smul_mem_nhds_self, Monoid.PushoutI.NormalWord.prod_smul_empty, normal_iff_eq_cosets, MeasureTheory.Measure.Regular.domSMul, isSimplyConnected_smul_set_iff, LinearMap.mapMatrix_smul, InnerProductGeometry.norm_ofLp_crossProduct, AdicCompletion.transitionMap_comp_reduceModIdeal, Subsemiring.pointwise_smul_subset_iff, Metric.preimage_smul_sphere, Subring.smul_closure, DiscreteTiling.PlacedTile.mem_smul_iff_smul_inv_mem, measurableEmbedding_const_smul, IsOpen.leftCoset, SubMulAction.mem_one, ModularGroup.re_T_zpow_smul, MulAction.isPreprimitive_fixingSubgroup_insert_iff, QuotientGroup.measurableSMul, MeasureTheory.measure_inter_inv_smul, MulAction.instIsPretransitiveOfSubsingleton, Matrix.kroneckerTMulAlgEquiv_symm_apply, continuousWithinAt_const_smul_iffβ‚€, Matrix.ofLp_toEuclideanCLM, isUnit_smul_iff, ergodic_smul_of_denseRange_pow, MulAction.mem_stabilizer_set', groupCohomology.isMulCocycleβ‚‚_of_mem_cocyclesβ‚‚, CStarMatrix.toCLM_apply_eq_sum, IsPGroup.card_orbit, op_smul_op_smul, stronglyMeasurable_const_smul_iff, Equiv.Perm.OnCycleFactors.val_centralizer_smul, Submonoid.instSMulCommClassSubtypeMemCenter, Matrix.kroneckerTMulStarAlgEquiv_apply, MulAction.dense_orbit, Subgroup.exists_leftTransversal_of_FiniteIndex, ContinuousMultilinearMap.smul_prod_smul, Matrix.range_toLin', Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, LinearMap.prodMapLinear_apply, MulActionHom.coe_mul, Submonoid.mem_inv_pointwise_smul_iffβ‚€, smul_le_iff_le_one_left, CuspForm.coe_translate, MeasureTheory.smul_ae, smul_algebraMap, LinearMap.mul_toMatrix', continuousAt_const_smul_iffβ‚€, IsBaseChange.pi, MulAction.zpow_smul_eq_iff_period_dvd, MeasureTheory.QuotientMeasureEqMeasurePreimage.smulInvariantMeasure_quotient, Commute.smul_right_iff, Metric.smul_sphere, Matrix.toLpLin_symm_id, SubMulAction.ofFixingSubgroup_of_eq_apply, Finset.smul_finset_subset_iff, Set.iUnion_inv_smul, ModularGroup.im_lt_im_S_smul, Matrix.isPositive_toEuclideanLin_iff, Set.op_smul_inter_nonempty_iff, IsClosed.leftCoset, Set.natCard_smul_set, Subring.instCovariantClassHSMulLe, HNNExtension.NormalWord.instFaithfulSMul, absorbs_iff_eventually_cobounded_mapsTo, Subgroup.instMeasurableConstSMul, Submodule.mulRightMap_eq_mulMap_comp, Set.powersetCard.mulActionHom_compl_mulActionHom_compl, MulAction.pow_smul_eq_iff_minimalPeriod_dvd, Metric.preimage_smul_closedBall, IsBaseChange.prodMap, kroneckerTMulLinearEquiv_mul, swap_mem_closure_isSwap, QuadraticMap.discr_comp, CategoryTheory.PreGaloisCategory.continuousSMul_aut_fiber, Subfield.continuousSMul, mulAutArrow_apply_symm_apply, Equidecomp.refl_toPartialEquiv, kroneckerTMulLinearEquiv_symm_kroneckerTMul, SubMulAction.nat_card_ofStabilizer_eq_add_one, AddSubgroup.relIndex_pointwise_smul, LinearMap.lsum_single, Submodule.quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, ConvexCone.smul_mem_iff, Units.measurableSMul, IsScalarTower.to₂₃₄, LinearMap.toMatrix'_mul, isFoelner_iff, Units.instMeasurableConstSMul, MeasureTheory.measure_smul_null, MulAction.IsBlock.univ, amenable_of_maxFoelner_neBot, AddSubmonoid.mem_inv_pointwise_smul_iffβ‚€, SubMulAction.coe_mul, LieAlgebra.lie_smul, IsFoelner.tendsto_meas_smul_symmDiff_smul, Fin.partialProd_left_inv, Projectivization.mk_eq_mk_iff_crossProduct_eq_zero, Matrix.diagonal_toLin', CStarMatrix.toCLM_apply, AddSubmonoid.smul_closure, ModularGroup.im_T_zpow_smul, AddSubgroup.pointwise_smul_toAddSubmonoid, smul_closure_orbit_subset, Matrix.charpoly_toLin', properSMul_iff_continuousSMul_ultrafilter_tendsto_t2, SubMulAction.ofFixingSubgroup.isMultiplyPretransitive, Subsemiring.mem_inv_pointwise_smul_iffβ‚€, Matrix.toLin'_pow, AddSubgroup.mem_smul_pointwise_iff_exists, LieAdmissibleAlgebra.toIsScalarTower, RelIso.apply_faithfulSMul, instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient, continuousOn_const_smul_iffβ‚€, Matrix.toLinAlgEquiv'_apply, Matrix.l2_opNNNorm_def, MulAction.smul_mem_of_set_mem_fixedBy, Finset.card_smul_inter, smul_mem_nhds_smul_iffβ‚€, HNNExtension.NormalWord.group_smul_head, IsScalarTower.left, SubMulAction.ENat_card_ofStabilizer_add_one_eq, Ideal.isPretransitive_of_isGalois, Subgroup.quotientEquivSigmaZMod_apply, Ideal.coe_smul_primesOver_mk, Matrix.minpoly_toLin', CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isConnected, AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem, ModularForm.slash_action_eq'_iff, PositiveLinearMap.gnsStarAlgHom_apply, MulSemiringAction.toRingEquiv_symm_apply, smulCommClass_self, Subgroup.IsComplement.pairwiseDisjoint_smul, one_smul, SetLike.forall_smul_mem_iff, LinearMap.toMatrix'_intrinsicStar, Set.preimage_smul, MDifferentiable.clm_prodMap, UpperHalfPlane.pos_real_smul_injective, IterateMulAct.mk_smul, coe_smul_fixedPoints_of_normal, cross_apply, MulAction.zpow_smul_eq_iff_minimalPeriod_dvd, ENNReal.smulCommClass_left, Finset.mulDysonETransform_fst, Set.powersetCard.mulActionHom_compl_bijective, UpperHalfPlane.J_smul, IsUnit.aestronglyMeasurable_const_smul_iff, IsQuotientCoveringMap.toContinuousConstSMul, SlashInvariantForm.slash_action_eqn'', LinearMap.toMatrixAlgEquiv'_toLinAlgEquiv', MulAction.IsQuasiPreprimitive.toIsPretransitive, kroneckerTMulLinearEquiv_tmul, isScalarTower_sphere_sphere_closedBall, QuotientGroup.orbit_eq_out_smul, Complex.UnitDisc.instSMulCommClass_closedBall_right, MulAction.mem_subgroup_orbit_iff, Set.preimage_smul_inv, IsSMulRegular.of_smul_eq_one, vecMulVecBilin_apply_apply, isAdjointPair_toLinearMapβ‚‚', Matrix.toLin'_apply', QuotSMulTop.map_exact, IsOpen.dense_iUnion_smul, Configuration.ofField.crossProduct_eq_zero_of_dotProduct_eq_zero, Matrix.ker_toLin'_eq_bot_iff, LinearMap.vecConsβ‚‚_apply, Submonoid.mem_pointwise_smul_iff_inv_smul_memβ‚€, MulAction.period_eq_one_iff, MulAction.bijectiveβ‚€, inv_smul_lt_iff_of_pos, MulSemiringAction.smul_mul, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, Ideal.isPretransitive_of_isGaloisGroup, MulAction.orbitRel_apply, Subgroup.conj_smul_le_of_le, MulAction.IsPretransitive.of_isScalarTower, Set.mem_inv_smul_set_iff, Subring.le_pointwise_smul_iffβ‚€, MulDistribMulAction.toMulEquiv_symm_apply, IsLowerSet.smul_subset, Complex.UnitDisc.instIsScalarTower_closedBall, LinearMap.BilinForm.mul_toMatrix', cfcβ‚™_map_prod, Set.smul_set_iInter, isOpenMap_smulβ‚€, CStarMatrix.mul_entry_mul_eq_inner_toCLM, Subring.smul_mem_pointwise_smul_iffβ‚€, SubMulAction.notMem_val_image, Finset.mulDysonETransform.smul_finset_snd_subset_fst, Set.smul_set_compl, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, AddSubmonoid.mem_pointwise_smul_iff_inv_smul_memβ‚€, Subsemiring.pointwise_smul_def, Function.End.smul_def, IsPGroup.smul_mul_inv_trivial_or_surjective, LeftPreLieAlgebra.ext_iff, LinearMap.toMatrixRight'_id, leibniz_cross, MulAction.orbitZPowersEquiv_symm_apply, IsSimpleRing.exists_algEquiv_matrix_end_mulOpposite, Subalgebra.smul_mem_pointwise_smul, isScalarTower_sphere_sphere_ball, inv_smul_le_iff_of_pos, Units.smul_inv, Subgroup.Commensurable.commensurable_inv, ModularGroup.exists_one_half_le_im_smul, Subgroup.instIsScalarTowerSubtypeMem, MulDistribMulAction.ext_iff, IsScalarTower.algebraMap_smul, measurableSMul_iterateMulAct, NonUnitalCommCStarAlgebra.toStarModule, Set.smul_set_sdiff, MulAction.instIsPretransitiveElemOrbit, LinearMap.prodMapAlgHom_apply_apply, smul_closedBall'', Subalgebra.inclusion.isScalarTower_right, MulAction.orbitRel.Quotient.orbit_mk, Submonoid.pointwise_smul_subset_iff, MulAction.mem_stabilizer_set, MulAction.IsMultiplyPreprimitive.isPreprimitive_ofFixingSubgroup, MulAction.surjectiveβ‚€, Subgroup.center.smulCommClass_left, UpperHalfPlane.petersson_slash_SL, MulAction.pow_smul_eq_iff_period_dvd, smul_pi, Matrix.ker_diagonal_toLin', MulAction.IsFixedBlock.univ, Subsemiring.instSMulCommClassSubtypeMemCenter_1, MulAction.mem_stabilizer_finset_iff_smul_finset_subset, MulAction.IsPreprimitive.of_prime_card, Subgroup.Commensurable.conj, MulAction.isMultiplyPreprimitive_iff, MulAction.Quotient.mk_smul_out, Finsupp.comapSMul_def, Submonoid.mem_pointwise_smul_iff_inv_smul_mem, IsSMulRegular.pow_iff, Set.smul_set_pi_of_isUnit, Units.val_smul, MulActionHom.map_mem_fixedPoints, isScalarTower_sphere_closedBall_ball, Subsemiring.pointwise_smul_le_pointwise_smul_iff, CategoryTheory.PreGaloisCategory.isPretransitive_of_surjective, AddSubmonoid.smul_mem_pointwise_smul_iffβ‚€, smul_mem_nhds_smul, ModularForm.SL_slash_def, Matrix.toLin'_one, Commute.smul_right_iffβ‚€, smul_finprod', GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset', OnePoint.smul_infty_eq_ite, NNReal.smul_def, inv_smul_eq_iffβ‚€, MultilinearMap.piFamilyβ‚—_apply, le_smul_of_one_le_left, Finsupp.comapSMul_apply, DistribMulAction.ext_iff, Set.inv_smul_set_distrib, NonUnitalStarSubalgebra.prod_inf_prod, Subgroup.transferTransversal_apply', AddAut.apply_faithfulSMul, cfcHom_nnreal_eq_restrict, IsOpen.rightCoset, Subgroup.continuousSMul, NNReal.smulCommClass_right, NumberField.InfinitePlace.isReal_smul_iff, Subring.pointwise_central_scalar, QuotientGroup.instContinuousSMul, Algebra.smul_units_def, Subgroup.smul_closure, UpperHalfPlane.coe_J_smul, MulAction.orbitEquivQuotientStabilizer_symm_apply, ContinuousAlternatingMap.piLIE_symm_apply_apply, endVecAlgEquivMatrixEnd_apply_apply, alternatingGroup.exists_mem_stabilizer_smul_eq, Subring.pointwise_smul_le_pointwise_smul_iff, MulAction.IsPreprimitive.of_isTrivialBlock_base, IsOpen.smul, AlgebraicIndependent.liftAlgHom_comp_reprField, MulAction.isSimpleOrder_blockMem_iff_isPreprimitive, Matrix.trace_toLin'_eq, MulDistribMulAction.smul_one, rightCoset_mem_rightCoset, Units.continuousConstSMul, invOf_smul_smul, Units.smulCommClass', tendsto_const_smul_iff, List.smul_prod', Submonoid.pointwise_isCentralScalar, Rat.cast_smul_eq_qsmul, IsClosed.smul_right_of_isCompact, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, smul_mem_nhds_smul_iff, Submodule.smul_mem_iff', PosSMulStrictMono.nnrat_of_rat, Units.coe_inv_smul, MulActionHom.toQuotient_apply, Module.FinitePresentation.linearEquivMapExtendScalars_apply, SubMulAction.mem_ofStabilizer_iff, MulAction.BlockMem.coe_bot, MulAction.isBlock_subgroup, ContinuousAlternatingMap.piLinearEquiv_symm_apply, SubMulAction.ofStabilizer.snoc_castSucc, OnePoint.IsBoundedAt.smul_iff, Submonoid.center.smulCommClass_left, MulAction.IsPretransitive.of_compHom, CategoryTheory.ActionCategory.curry_apply_left, Set.iUnion_smul_eq_setOf_exists, FixedPoints.mem_subgroup, instIsLeftCancelSMul, Complex.UnitDisc.coe_smul_closedBall, MeasureTheory.smulInvariantMeasure_tfae, UpperHalfPlane.pos_real_re, DiscreteTiling.PlacedTile.coe_smul, SubMulAction.mem_ofFixingSubgroup_insert_iff, MulAction.coe_aestabilizer, LinearMap.toMatrix'_comp, Matrix.toLinearEquiv'_apply, LinearMap.isUnit_toMatrix'_iff, hasDerivAtFilter_finCons', CategoryTheory.End.smul_right, Equiv.Perm.isPretransitive_of_isCycle_mem, MulAction.isMultiplyPreprimitive_succ_iff_ofStabilizer, ArithmeticFunction.coe_zeta_smul_apply, AddAction.toPermHom_apply_symm_apply, IsUnit.preimage_smul_set, Finset.smul_univβ‚€', hasDerivWithinAt_finCons', Matrix.toBilin'_comp, Matrix.isHermitian_iff_isSymmetric, MeasureTheory.smul_mem_ae, IsFoelner.mean_smul_eq_mean, leftCoset_mem_leftCoset, MulAction.ofQuotientStabilizer_mk, Subsemiring.instCovariantClassHSMulLe, algebraMap.coe_smul', Subring.pointwise_smul_le_iffβ‚€, MeasureTheory.measure_inv_smul_symmDiff, ergodic_smul_of_denseRange_zpow, CategoryTheory.PreGaloisCategory.instIsPretransitiveCarrierObjFintypeCatOfIsConnected, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, Subgroup.pointwise_smul_le_iffβ‚€, isSMulRegular_of_group, Complex.UnitDisc.instSMulCommClass_circle_right, Module.FinitePresentation.exists_lift_equiv_of_isLocalizedModule, MeasureTheory.ergodicSMul_iterateMulAct, AddSubgroup.smul_mem_pointwise_smul, Metric.smul_closedBall, Metric.smul_eball, SlashInvariantForm.slash_action_eqn_SL'', Monoid.PushoutI.NormalWord.summand_smul_def', Subgroup.smul_sup, Matrix.toEuclideanLin_conjTranspose_eq_adjoint, Set.smul_univ, ContMDiffAt.clm_prodMap, MulAction.zpow_add_period_smul, smul_one_smul, MulAction.isBlock_iff_disjoint_smul_of_ne, Set.smul_set_sdiffβ‚€, MeasurableSet.const_smul_of_ne_zero, IsLocalizedModule.map_bijective_iff_localizedModuleMap_bijective, MulAction.mem_stabilizer_set_iff_smul_set_subset, QuotSMulTop.equivQuotTensor_naturality_mk, Ideal.ResidueField.algHom_ext_iff, Matrix.toLpLinAlgEquiv_apply_apply_ofLp, Localization.instSMulCommClassOfIsScalarTower, LinearMap.toMatrix'_id, Equiv.Perm.instIsPreprimitive, Set.smul_set_univ, LocalizedModule.mul_by_divBy, Projectivization.cross_mk, support_comp_inv_smul, MulAction.zpowersQuotientStabilizerEquiv_symm_apply, IsScalarTower.of_compHom, Subgroup.smul_def, Submodule.mem_smul_top_iff, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, LinearMap.BilinForm.toMatrix'_comp, Submonoid.center.smulCommClass_right, continuousOn_const_smul_iff, Subgroup.instMeasurableSMul, mulLinearMap_apply_apply, UpperHalfPlane.coe_specialLinearGroup_apply, OreLocalization.smul_oreDiv, IsUpperSet.smul, AlternatingGroup.isPretransitive_of_three_le_card, triple_product_eq_det, MulAction.mem_fixedPoints_iff_card_orbit_eq_one, KaehlerDifferential.derivationQuotKerTotal_lift_comp_linearCombination, tangentConeAt_mono_field, MulAction.smul_fixedBy, MulAction.IsPreprimitive.exists_mem_smul_and_notMem_smul, MeasureTheory.measure_smul, MulAction.orbit.coe_smul, Finset.smul_finset_eq_univ, Finset.op_smul_convolution_eq_convolution_smul, DiscreteTiling.PlacedTile.smul_mem_smul_iff, Monoid.CoprodI.Word.equivPair_head_smul_equivPair_tail, Equiv.smulRight_symm_apply, Matrix.toLinearMapRight'_apply, MulAction.is_two_pretransitive_iff, smul_pow, Subsemiring.coe_pointwise_smul, ContinuousMultilinearMap.piβ‚—α΅’_symm_apply, MulAction.orbitZPowersEquiv_symm_apply', CategoryTheory.PreGaloisCategory.IsFundamentalGroup.continuous_smul, MeasureTheory.NullMeasurableSet.smul, MeasureTheory.measure_inv_smul_union, Units.isScalarTower', Set.smul_set_eq_univ, LieAlgebra.SpecialLinear.val_single, Matrix.ofLp_toEuclideanLin_apply, NNReal.instContinuousSMulOfReal, Subgroup.smul_inf, Monoid.CoprodI.Word.equivPair_smul_same, Equidecomp.symm_involutive, SubMulAction.ofStabilizer.isMultiplyPretransitive, CFC.nnrpow_eq_nnrpow_pi, SubMulAction.ofFixingSubgroup.append_right, SMulCommClass.of_mul_smul_one, Matrix.mulVecBilin_apply, nat_smul_eq_nsmul, MultilinearMap.piFamily_smul, lieEquivMatrix'_symm_apply, Projectivization.smul_def, Matrix.proj_diagonal, ModularGroup.im_smul_eq_div_normSq, MulAction.isPretransitive_of_is_two_pretransitive, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle, isOpenMap_smul, Submonoid.instCovariantClassHSMulLe, mem_own_leftCoset, LocalizedModule.map_id, IsUnit.smul_uniformity, Matrix.linfty_opNorm_toMatrix, isSimplyConnected_smul_setβ‚€_iff, Subgroup.smul_opposite_image_mul_preimage', CategoryTheory.PreGaloisCategory.isGalois_iff_pretransitive, Subring.continuousSMul, Module.IsTorsionBySet.isScalarTower, SubMulAction.subset_coe_one, AddSubgroup.pointwise_smul_le_pointwise_smul_iffβ‚€, NumberField.InfinitePlace.comap_smul, FreeGroup.startsWith.smul_def, NNRat.cast_smul_eq_nnqsmul, tendsto_const_smul_iffβ‚€, Ideal.coe_smul_primesOver_eq_map_galRestrict, Matrix.SpecialLinearGroup.toLin'_to_linearMap, LinearMap.mul_toMatrixβ‚‚'_mul, LinearMap.toMatrixβ‚‚'_mul, MeasureTheory.eventually_nhds_one_measure_smul_diff_lt, Finset.smul_convolution_eq_convolution_inv_mul, IsUnit.smul_left_cancel, OnePoint.smul_infty_def, AddSubgroup.smul_mem_pointwise_smul_iffβ‚€, EisensteinSeries.tendsto_double_sum_S_act, Subsemiring.instSMulCommClassSubtypeMemCenter, LinearMap.intrinsicStar_single, Module.Basis.map_orientation_eq_det_inv_smul, StarSemigroup.toOpposite_starModule, triple_product_permutation, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset, instSMulCommClass_sphere_ball_ball, Group.preimage_smul_set, HNNExtension.NormalWord.smul_cons, cosetToCuspOrbit_apply_mk, SubMulAction.SMulMemClass.coe_subtype, Matrix.kroneckerMapBilinear_mul_mul, ContMDiff.clm_prodMap, SubMulAction.isCentralScalar, MulAction.stabilizerEquivStabilizer_one, Submonoid.continuousSMul, NormedSpace.norm_smul_le, RelHom.smul_def, MulAction.orbit.pairwiseDisjoint, SetLike.GradedMul.toGradedSMul, IsUnit.continuousOn_const_smul_iff, OnePoint.exists_mem_SL2, Monoid.PushoutI.NormalWord.cons_eq_smul, LinearEquiv.smulOfNeZero_symm_apply, Submonoid.subset_pointwise_smul_iff, Subsemiring.mem_pointwise_smul_iff_inv_smul_mem, Subgroup.conjAct_pointwise_smul_eq_self, MulAction.IsTopologicallyTransitive.exists_smul_inter, SubMulAction.compl_def, DistribMulAction.toAddEquiv_symm_apply, MulAction.orbit_smul, Finset.card_inter_smul, HasDerivAtFilter.prodMk, ContinuousMultilinearMap.prodL_symm_apply, CliffordAlgebra.foldr'Aux_apply_apply, le_smul_iff_one_le_left, QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last, EMetric.preimage_smul_closedBall, MulAction.orbit_submonoid_subset, LinearMap.IntrinsicStar.isSelfAdjoint_iff_toMatrix', Matrix.toLin_finTwoProd_toContinuousLinearMap, Set.smul_inter_nonempty_iff, Finset.mulETransformRight_fst, MulAction.injectiveβ‚€, orbit_subgroup_eq_rightCoset, MulAction.pow_mod_period_smul, LinearMap.toMatrixAlgEquiv'_symm, AddSubmonoid.mem_inv_pointwise_smul_iff, OreLocalization.oreDiv_smul_oreDiv, Set.powersetCard.isPreprimitive_perm, instIsPushoutFractionRingPolynomial, MeasureTheory.measure_inv_smul_inter, hasDerivAtFilter_finCons, HasStrictDerivAt.prodMk, SubMulAction.SMulMemClass.subtype_apply, Set.encard_smul_set, SubMulAction.coe_one, SubMulAction.inclusion.coe_eq, lt_smul_of_one_lt_left, IsOpen.smulβ‚€, Matrix.kroneckerTMulBilinear_apply, comp_smul_left, RingHom.smulOneHom_apply, IsOpen.smul_left, Set.powersetCard.isPretransitive_of_isMultiplyPretransitive, LinearMap.prodMap_smul, Finset.smul_prod, SetLike.mk_smul_of_tower_mk, Set.inv_op_smul_set_distrib, MulAction.one_smul, hasEigenvalue_toLin'_diagonal_iff, ContinuousLinearMap.prodL_apply, IsLocalizedModule.map_injective_iff_localizedModuleMap_injective, Sylow.coe_subgroup_smul, MeasureTheory.smul_set_ae_eq, Set.smul_div_smul_comm, MulAction.pow_period_add_smul, subset_interior_smul_right, IsCyclic.mulAutMulEquiv_symm_apply_symm_apply, Matrix.toLpLin_mul, MulAction.IsBlock.orbit, Matrix.toLin'_submatrix, Polynomial.instIsScalarTowerElemRootSet, MulSemiringAction.smul_one, HasDerivAt.prodMk, Subring.pointwise_smul_le_pointwise_smul_iffβ‚€, punctured_nhds_smulβ‚€, MulAction.pretransitive_iff_subsingleton_quotient, MulAction.isTopologicallyTransitive_iff_dense_iUnion, cross_dot_cross, SetLike.smul_of_tower_def, SubMulAction.ofFixingSubgroup_of_singleton_bijective, Subsemiring.subset_pointwise_smul_iff, MulAction.orbit_eq_iff, Equiv.Perm.OnCycleFactors.toPermHom_apply, lt_smul_iff_one_lt_left, Monoid.PushoutI.NormalWord.of_smul_eq_smul, Sylow.smul_subtype, Matrix.toEuclideanLin_apply_piLp_toLp, Set.powersetCard.isPreprimitive_alternatingGroup, continuousSMul_iff_stabilizer_isOpen, LieAlgebra.ext_iff, hasStrictDerivAt_pi, Submonoid.smul_closure, AlgEquiv.smul_units_def, Sylow.isPretransitive_of_finite, ContinuousAlternatingMap.prodLIE_apply, Subring.smul_sup, Finset.smul_prod', MulAction.subgroup_smul_def, threeGPFree_smul_set, SubMulAction.ofFixingSubgroupEmpty_equivariantMap_bijective, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, DistribMulAction.smul_zero, Module.zero_smul, MulDistribMulAction.smul_mul, continuousSMul_closedBall_closedBall, ModularGroup.T_S_rel, Submonoid.instMeasurableConstSMul, HasDerivWithinAt.prodMk, Set.smul_inter_nonempty_iff', Equiv.swap_smul_self_smul, AddSubgroup.coe_pointwise_smul, LinearMap.vecEmptyβ‚‚_apply, IsRightCancelMulZero.faithfulSMul, IsUnit.isHomeomorph_smul, aemeasurable_const_smul_iff, IsGalois.map_fixingSubgroup, Matrix.toLinAlgEquiv'_toMatrixAlgEquiv', AddSubmonoid.coe_pointwise_smul, IsUnit.smul_tendsto_smul_iff, MeasureTheory.measure_preimage_smul, MeasureTheory.Measure.instSMulInvariantMeasureSubtypeMemSubmonoidOfIsMulLeftInvariant, QuotSMulTop.map_comp, AddSubgroup.pointwise_smul_le_pointwise_smul_iff, Projectivization.cross_mk_of_ne, Matrix.kroneckerTMulAlgEquiv_apply, GrpCat.SurjectiveOfEpiAuxs.h_apply_fromCoset_nin_range, LieAdmissibleAlgebra.ext_iff, endVecAlgEquivMatrixEnd_symm_apply_apply, IsUnit.smul_bijective, properSMul_iff_continuousSMul_ultrafilter_tendsto, Matrix.trace_kroneckerMapBilinear, Polynomial.rootSet.coe_smul, IsometryEquiv.constSMul_apply, Matrix.toLinAlgEquiv'_one, IsUnit.isClosedMap_smul, MulAction.IsMinimal.dense_orbit, SubMulAction.map_ofFixingSubgroupUnion_bijective, faithfulSMul_iff, Subgroup.Commensurable.commensurator'_mem_iff, ModularGroup.exists_smul_mem_fd, Ideal.pointwise_smul_toAddSubgroup, hasDerivAtFilter_pi, Set.powersetCard.mulActionHom_singleton_bijective, Subgroup.properlyDiscontinuousSMul_of_tendsto_cofinite, MulAction.isBlock_iff_smul_eq_of_nonempty, CategoryTheory.PreGaloisCategory.mulAction_naturality, Finset.card_smul_inter_smul, instErgodicSMulMulOppositeOfIsMulRightInvariant, Monoid.CoprodI.Word.mem_smul_iff, Matrix.toLpLin_symm_comp, instSMulCommClass_closedBall_closedBall_ball, alternatingGroup.isPretransitive_of_three_le_card, SubMulAction.ofFixingSubgroup_of_eq_bijective, Complex.UnitDisc.instSMulCommClass_circle_closedBall, Monoid.CoprodI.Word.smul_eq_of_smul, QuotientGroup.orbit_mk_eq_smul, Set.preimage_smulβ‚€, SubMulAction.SMulMemClass.subtype_injective, NonUnitalCStarAlgebra.toIsScalarTower, IsScalarTower.of_commMonoid, QuotientGroup.instContinuousConstSMul, Equiv.Perm.instIsPretransitive, eq_cosets_of_normal, Subgroup.transferFunction_apply, ModularForm.slash_def, ProperSMul.isProperMap_smul_pair_set, SubMulAction.smul_mem_iff', Finset.dens_smul_finset, hasDerivAt_finCons', Monoid.PushoutI.NormalWord.instFaithfulSMul_2, UpperHalfPlane.instContinuousGLSMul, MulAction.mem_stabilizer_iff, isScalarTower_sphere_ball_ball, GradedMonoid.isScalarTower_right, MulAction.continuousSMul_compHom, smul_uniformity, Module.Basis.orientation_unitsSMul, CategoryTheory.PreGaloisCategory.IsNaturalSMul.naturality, Finset.inv_smul_mem_iffβ‚€, Subsemiring.smul_sup, MulAction.orbit_nonempty, Subgroup.mem_inv_pointwise_smul_iff, CategoryTheory.ActionCategory.homOfPair.val, CongruenceSubgroup.conj_cong_is_cong, LinearMap.BilinForm.toMatrix'_mul, AddSubgroup.pointwise_smul_le_iff, Set.powersetCard.coe_mulActionHom_compl, hasDerivAt_single, SubMulAction.not_mem_of_mem_ofFixingSubgroup, ModularGroup.im_T_inv_smul, Finset.mulETransformRight_snd, MeasureTheory.Measure.addHaarScalarFactor_domSMul, LinearMap.toMatrixβ‚‚'_complβ‚‚, MulAction.IsPreprimitive.mk', AddSubmonoid.smul_mem_pointwise_smul_iff, MulAction.orbitRel.Quotient.mapsTo_smul_orbit, Matrix.toLinAlgEquiv'_symm, SlashInvariantFormClass.norm_petersson_smul, MulDistribMulAction.toMonoidHomZModOfIsCyclic_apply, NonUnitalCommCStarAlgebra.toSMulCommClass, MulAction.stabilizer_orbit_eq, AddSubgroup.mem_inv_pointwise_smul_iffβ‚€, Monoid.PushoutI.NormalWord.prod_smul, SubMulAction.val_preimage_orbit, smul_invOf_smul, absorbent_iff_inv_smul, continuous_const_smul_iffβ‚€, AddSubmonoid.pointwise_smul_le_pointwise_smul_iff, Filter.smul_tendsto_smul_iff, UpperHalfPlane.modular_T_zpow_smul, CFC.nnrpow_eq_nnrpow_prod, Metric.preimage_smul_ball, MulAction.isPeriodicPt_smul_iff, SubMulAction.IsPreprimitive.isPreprimitive_ofFixingSubgroup_inter, NormedGroup.to_isIsometricSMul_left, OreLocalization.smul_div_one, MeasurableSet.const_smul, MulActionHom.oneEmbeddingMap_bijective, Subring.subset_pointwise_smul_iff, IsUnit.continuousAt_const_smul_iff, FreeMonoid.smul_def, QuotSMulTop.map_apply_mk, Matrix.cramer_smul, Finset.op_smul_stabilizer_of_no_doubling, ContMDiffWithinAt.clm_prodMap, smul_piβ‚€, subset_interior_smul, MulAction.isMultiplyPreprimitive_ofStabilizer, Subgroup.conj_smul_eq_self_of_mem, FreeGroup.Orbit.duplicate, Finset.mem_inv_smul_finset_iffβ‚€, CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isGalois, Set.pairwise_disjoint_smul_iff, Set.smul_mem_smul_set_iff, Subring.instSMulCommClassSubtypeMemCenter_1, NumberField.InfinitePlace.mem_orbit_iff, invOf_smul_eq_iff, HNNExtension.NormalWord.of_smul_eq_smul, Module.Finite.instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule_1, totallyBounded_iff_subset_finite_iUnion_nhds_one, Set.mem_smul_set_iff_inv_smul_mem, IsUnit.measurable_const_smul_iff, Set.smul_Icc, Set.smul_set_subset_smul_set_iff, Subalgebra.continuousSMul, lowerClosure_smul, exists_bijective_map_powers, OrderIso.smulRightDual_symm_apply, Set.Infinite.smul_set, jacobi_cross, SubMulAction.orbitRel_of_subMul, DiscreteTiling.PlacedTile.coe_mk_coe, Finset.subset_smul_finset_iffβ‚€, UpperHalfPlane.pos_real_im, Subring.smul_mem_pointwise_smul, Subgroup.transferTransversal_apply'', Representation.ofMulDistribMulAction_apply_apply, WithConv.ofConv_smul, MulAction.minimalPeriod_pos, Subsemiring.pointwise_smul_le_pointwise_smul_iffβ‚€, neg_cross, Projectivization.generalLinearGroup_smul_def, LocalizedModule.map_mk, MeasureTheory.tendsto_measure_smul_diff_isCompact_isClosed, isScalarTower_iff_smulCommClass_of_commMonoid, aestronglyMeasurable_const_smul_iffβ‚€, Monoid.CoprodI.Word.smul_def, smul_eq_iff_eq_invOf_smul, AddAut.mulLeft_apply_symm_apply, LinearMap.det_toMatrix', IsQuotientCoveringMap.isCancelSMul, CFC.sqrt_map_pi, Subgroup.smul_mem_pointwise_smul, SubMulAction.smul_mem_iff, smul_eq_iff_eq_inv_smul, Absorbs.univ, Equidecomp.trans_toPartialEquiv, Finset.smul_finset_interβ‚€, eq_inv_smul_iffβ‚€, Subgroup.relIndex_pointwise_smul, smul_zpow', ModularForm.SL_slash_apply, OreLocalization.oreDiv_smul_char, MeasureTheory.Measure.addHaarScalarFactor_smul_congr', Subalgebra.pointwise_smul_toSubsemiring, ThreeGPFree.smul_set, NormedSpace.ext_iff, MulAction.smul_mem_fixedBy_iff_mem_fixedBy, SubMulAction.mem_ofFixingSubgroup_iff, EisensteinSeries.eisSummand_SL2_apply, AddSubgroup.le_pointwise_smul_iff, Subsemiring.continuousSMul, ContinuousMultilinearMap.piβ‚—α΅’_apply, TrivSqZeroExt.inl_mul_eq_smul, Commute.smul_left_iffβ‚€, DualNumber.algHom_ext'_iff, Matrix.range_diagonal, SubMulAction.isScalarTower, Subgroup.quotientEquivSigmaZMod_symm_apply, mem_fixingSubgroup_iff, SubMulAction.ofFixingSubgroup.isMultiplyPretransitive', MulActionHom.map_mem_fixedBy, Monoid.CoprodI.Word.rcons_eq_smul, UniformOnFun.continuousSMul_submodule_of_image_bounded, continuous_const_smul_iff, Group.preimage_smul_setβ‚›β‚—, Finset.smul_finset_sdiffβ‚€, ContinuousLinearMap.prodβ‚—_apply, MulAction.orbit_eq_univ, SlashInvariantForm.slash_action_eqn', Subgroup.equivSMul_symm_apply_coe, Units.continuousSMul, Subgroup.smul_toLeftFun, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, LinearMap.toMatrixβ‚‚'_comp, NNReal.instSMulPosStrictMono, NonUnitalStarSubalgebra.prod_top, LinearPMap.closure_inverse_graph, instSMulCommClass_sphere_closedBall_ball, isOpenMap_smul_of_sigmaCompact, ContMDiffOn.clm_prodMap, Submonoid.pow_smul_mem_closure_smul, ext_iff, Matrix.SpecialLinearGroup.toLin'_symm_apply, MeasureTheory.smul_set_ae_le, LeftPreLieAlgebra.toIsScalarTower, Subsemiring.smul_closure, isScalarTower_closedBall_closedBall_ball, rightCoset_one, Set.disjoint_smul_set_left, LinearMap.toMatrix'_one, LieAlgebra.SpecialLinear.val_singleSubSingle, Subsemiring.pointwise_smul_le_iffβ‚€, SubMulAction.val_smul_of_tower, Matrix.cstar_norm_def, EMetric.preimage_smul_ball, Monoid.CoprodI.lift_word_ping_pong, ModularForm.coe_translate, Equiv.Perm.moves_in, MulAut.apply_faithfulSMul, Set.smul_set_subset_iffβ‚€, smul_ball_one, UpperHalfPlane.neg_smul, cross_cross_eq_smul_sub_smul', Set.disjoint_smul_set_right, Equiv.smulRight_apply, orbit_subgroup_one_eq_self, MulAction.quotient_preimage_image_eq_union_mul, MeasureTheory.fundamentalInterior_smul, Matrix.toLinearMapRight'_one, Matrix.maxGenEigenspace_toLin'_diagonal_eq_eigenspace, MulAction.zpow_period_add_smul, Set.Finite.absorbs_biInter, IsUniformGroup.to_uniformContinuousConstSMul, MulAction.IwasawaStructure.is_conj, IsSMulRegular.one, SlashInvariantFormClass.petersson_smul, Subgroup.mem_pointwise_smul_iff_inv_smul_mem, smul_finprod_perm, AddCommGroup.smul_top_eq_top_of_divisibleBy_int, Submodule.topologicalClosure_iSup_map_single, MulAction.period_eq_minimalPeriod, exists_disjoint_smul_of_isCompact, Subalgebra.pointwise_smul_toSubmodule, CategoryTheory.PreGaloisCategory.isPretransitive_of_isGalois, smul_lt_iff_lt_one_left, Matrix.toLpLin_apply, EMetric.smul_closedBall, properlyDiscontinuousSMul_iff_properSMul, Matrix.toLin'_apply, QuotSMulTop.map_id, RelHom.apply_faithfulSMul, KaehlerDifferential.mulActionBaseChange_smul_zero, Multiset.smul_prod, Units.smul_eq_mul, hasDerivAt_pi, GrpCat.SurjectiveOfEpiAuxs.g_apply_fromCoset, ModuleCat.sMulCommClass_mk, MulAction.is_one_pretransitive_iff, hasDerivWithinAt_finCons, HNNExtension.NormalWord.prod_smul_empty, Finset.smul_prod_perm, MulAction.stabilizer_smul_eq_right, OpenPartialHomeomorph.unitBallBall_symm_apply, MulAction.card_orbit_mul_card_stabilizer_eq_card_group, AddSubgroup.le_pointwise_smul_iffβ‚€, Sylow.smul_le, one_smul_eq_id, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_fromCoset, instSMulCommClass_sphere_sphere_closedBall, UpperHalfPlane.contMDiff_smul, mem_rightCoset_iff, Matrix.l2_opNorm_def, Subgroup.smul_bot, AddSubgroup.pointwise_smul_def, AddSubmonoid.le_pointwise_smul_iffβ‚€, Matrix.toEuclideanLin_toLp, AddAut.smul_def, FixedPoints.mem_submonoid, IsFoelner.amenable, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, Ideal.coe_smul_primesOver, stronglyMeasurable_const_smul_iffβ‚€, IsBaseChange.finitePow, Equidecomp.symm_bijective, MeasureTheory.measure_union_inv_smul, Sylow.smul_def, ENNReal.smulCommClass_right, HasCompactSupport.comp_smul, Matrix.toLin'_toMatrix', ContinuousAlternatingMap.prodLIE_symm_apply, Subring.smul_mem_pointwise_smul_iff, Set.smul_set_subset_iff_subset_inv_smul_set, UpperHalfPlane.isometry_pos_mul, DomMulAct.mk_smul_monoidHom_apply, PosSMulMono.toPosSMulReflectLE, instIsLocalizedModuleLinearMapIdLocalizationLocalizedModuleMapOfFinitePresentation, closure_smul, instSMulCommClass_closedBall_closedBall_closedBall, smul_mem_fixedPoints_of_normal, SMul.smul_stabilizer_def, Set.smul_set_piβ‚€', MulAction.isTopologicallyTransitive_iff, SetLike.instSMulCommClassSubtypeMem_1, CategoryTheory.ActionCategory.hom_as_subtype, Subgroup.le_pointwise_smul_iffβ‚€, MulAction.injective, Monoid.PushoutI.NormalWord.summand_smul_def, Equidecomp.symm_toPartialEquiv, IsUnit.continuous_const_smul_iff, RightPreLieAlgebra.ext_iff, Subgroup.smulCommClass_left, Matrix.GeneralLinearGroup.IsParabolic.smul_eq_self_iff, Additive.addAction_isPretransitive, Matrix.kroneckerStarAlgEquiv_apply, MulAction.minimalPeriod_eq_card, MulAction.mem_stabilizer_finset', MulAction.subsingleton_orbit_iff_mem_fixedPoints, Subsemiring.mem_pointwise_smul_iff_inv_smul_memβ‚€, AddSubgroup.pointwise_isCentralScalar, Projectivization.smul_mk, Real.volume_preserving_transvectionStruct, mulSupport_comp_inv_smulβ‚€, ContinuousAlternatingMap.piLinearEquiv_apply, Matrix.toLpLinAlgEquiv_symm_apply, MDifferentiableWithinAt.clm_prodMap, smul_iterate_apply, ModularGroup.SL_neg_smul, OpenPartialHomeomorph.unitBallBall_apply, Subring.pointwise_smul_toSubsemiring, LinearMap.toMatrix'_mulVec, MulAction.IsBlockSystem.of_normal, MulAction.IsTrivialBlock.smul_iff, SetLike.instIsScalarTowerSubtypeMem, Set.mem_smul_set_iff_inv_smul_memβ‚€, Set.smul_graphOn, MulAction.smul_zpow_fixedBy_eq_of_commute, SubMulAction.isScalarTower', MulAction.pretransitive_iff_unique_quotient_of_nonempty, approxOrderOf.smul_eq_of_mul_dvd, HNNExtension.NormalWord.t_pow_smul_eq_unitsSMul, Units.isScalarTower'_left, OreLocalization.smul_one_smul, MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot, Set.powersetCard.coe_mulActionHom_of_embedding, mul_smul, instSMulCommClass_sphere_sphere_ball, Flag.coe_smul, AddSubgroup.index_smul, MulAction.IsBlock.of_orbit, Matrix.diagonal_comp_single, MulAction.ofQuotientStabilizer_smul, measurable_const_smul_iffβ‚€, Finset.smul_univβ‚€, NonUnitalCStarAlgebra.toSMulCommClass, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, SubMulAction.image_inclusion, Finset.card_smul_finset, Finset.mulETransformLeft_snd, Monoid.PushoutI.NormalWord.instFaithfulSMul_1, IsUnit.smul, MulAction.orbitRel.Quotient.orbit_eq_orbit_out, Set.smul_univβ‚€', mem_fixingSubmonoid_iff, instIsOrderedSMulOfIsOrderedMonoid, Subgroup.smul_diff', MulAction.Regular.isPretransitive, Set.powersetCard.mulActionHom_of_embedding_surjective, SubMulAction.ofFixingSubgroup_insert_map_bijective, Subalgebra.pointwise_smul_toSubring, Set.smul_set_symmDiffβ‚€, IsUnit.preimage_smul_setβ‚›β‚—, InnerProductSpace.symm_toEuclideanLin_rankOne, LinearMap.BilinForm.toMatrix'_compRight, MulDistribMulAction.toMonoidHom_apply, Algebra.Extension.Cotangent.ker_mk, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, Finset.mulETransformLeft_fst, TrivSqZeroExt.mul_inl_eq_op_smul, Ideal.pointwise_smul_toAddSubmonoid, Complex.UnitDisc.instIsScalarTower_closedBall_closedBall, LinearPMap.IsClosable.graph_closure_eq_closure_graph, isBoundedLinearMap_prod_multilinear, LieAlgebra.SpecialLinear.singleSubSingle_sub_singleSubSingle', Subgroup.IsArithmetic.conj, Subgroup.instFaithfulSMulSubtypeMem, op_smul_mul, Subring.mem_inv_pointwise_smul_iffβ‚€, OreLocalization.oreDiv_one_smul, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, Matrix.rank_vecMulVec, Monoid.CoprodI.Word.equivPair_tail_eq_inv_smul, GrpCat.SurjectiveOfEpiAuxs.Ο„_apply_fromCoset', Subsemiring.mem_inv_pointwise_smul_iff, le_inv_smul_iff_of_pos, MulAction.Quotient.smul_coe, hasDerivAt_finCons, upperClosure_smul, Complex.UnitDisc.coe_circle_smul, Set.powersetCard.coe_smul, IsOpen.iUnion_preimage_smul, CFC.nnrpow_map_prod, LinearMap.toMatrixRight'_comp, Submodule.isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul, smul_left_cancel_iff, Matrix.kroneckerStarAlgEquiv_symm_apply, smul_inv, IsUnit.isOpenMap_smul, MeasureTheory.integral_smul_eq_self, orbit_fixingSubgroup_compl_subset, UpperHalfPlane.modular_T_smul, measurable_const_smul_iff, Subgroup.pointwise_smul_toSubmonoid, Finset.smul_stabilizer_of_no_doubling, Submonoid.smul_bot, NonUnitalCommCStarAlgebra.toIsScalarTower, NNReal.instIsScalarTowerOfReal, IsCusp.smul, Set.smul_set_piβ‚€, KaehlerDifferential.mulActionBaseChange_smul_tmul, SimpleGraph.mem_ker_toLin'_lapMatrix_of_connectedComponent, Finset.smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves, isCancelSMul_iff_eq_one_of_smul_eq, MulAction.mem_stabilizer_finset_iff_subset_smul_finset, ModularGroup.smul_eq_lcRow0_add, Submodule.span_singleton_group_smul_eq, Matrix.SpecialLinearGroup.toLin'_apply, Module.Finite.of_isComplemented_codomain, nhds_smul, Subgroup.mk_smul, IsUpperSet.smul_subset, CStarMatrix.norm_def, MulAction.mem_orbit_self, AddSubmonoid.mem_smul_pointwise_iff_exists, IsSelfAdjoint.smul_iff, Equiv.Perm.OnCycleFactors.centralizer_smul_def, Measurable.measurableSMulβ‚‚_iterateMulAct, MulAction.mapsTo_smul_orbit, AlgHom.mulLeftRightMatrix.comp_inv, SetLike.instSMulCommClassSubtypeMem_2, MulAction.surjective, SubMulAction.IsPretransitive.isPretransitive_ofFixingSubgroup_inter, instIsPushoutFractionRingMvPolynomial_1, Set.subset_smul_set_iffβ‚€, int_smul_eq_zsmul, LinearMap.toMatrixAlgEquiv'_comp, MulAction.smul_orbit_eq_orbit_smul, smul_mul', MulAction.mem_fixedBy, LinearPMap.IsClosable.existsUnique, aemeasurable_const_smul_iffβ‚€, CStarMatrix.inner_toCLM_conjTranspose_right, SlashInvariantForm.T_zpow_width_invariant, AddSubmonoid.pointwise_smul_le_iffβ‚€, LieModule.toEnd_matrix, MulAction.isBlock_subtypeVal, CStarMatrix.toCLM_apply_single_apply, MeasureTheory.QuotientMeasureEqMeasurePreimage.covolume_ne_top, SubMulAction.coe_pow, QuotientGroup.out_conj_pow_minimalPeriod_mem, UpperHalfPlane.mdifferentiable_smul, eq_inv_smul_iff, AddSubgroup.mem_pointwise_smul_iff_inv_smul_memβ‚€, ModularForm.slash_apply, Subsemiring.le_pointwise_smul_iffβ‚€, Subgroup.smul_coe, Action.FintypeCat.ofMulAction_apply, Module.FinitePresentation.linearEquivMapExtendScalars_symm_apply, IsClosed.rightCoset, continuousAt_const_smul_iff, smul_singleton_mem_nhds_of_sigmaCompact, IsUnit.continuousWithinAt_const_smul_iff, instIsPushoutFractionRingMvPolynomial, Finset.convolution_op_smul_eq_convolution_mul_inv, Representation.ofMulAction_def, smul_le_of_le_one_left, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero, instErgodicSMulOfIsMulLeftInvariant, UpperHalfPlane.petersson_slash, Matrix.spectrum_toLin', IsOpen.exists_smul_mem, Subgroup.smul_mem_pointwise_smul_iff, Function.End.apply_FaithfulSMul, IsClosed.smul

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”toSMulβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toSMulβ€”ext
mul_smul πŸ“–mathematicalβ€”toSMul
Semigroup.toMul
β€”β€”

VAdd

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
3 mathmath: comp.vaddCommClass, comp.vaddCommClass', comp.vaddAssocClass

VAdd.comp

Definitions

NameCategoryTheorems
vadd πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
vaddAssocClass πŸ“–mathematicalβ€”VAddAssocClass
VAdd.comp
β€”vadd_assoc
vaddCommClass πŸ“–mathematicalβ€”VAddCommClass
VAdd.comp
β€”VAddCommClass.vadd_comm
vaddCommClass' πŸ“–mathematicalβ€”VAddCommClass
VAdd.comp
β€”VAddCommClass.vadd_comm

VAddAssocClass

Theorems

NameKindAssumesProvesValidatesDepends On
left πŸ“–mathematicalβ€”VAddAssocClass
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”AddSemigroupAction.add_vadd
of_vadd_zero_add πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
HVAdd.hVAdd
instHVAdd
AddZero.toZero
VAddAssocClass
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”vadd_eq_add
add_assoc
op_left πŸ“–mathematicalβ€”VAddAssocClass
AddOpposite
β€”IsCentralVAdd.unop_vadd_eq_vadd
vadd_assoc
op_right πŸ“–mathematicalβ€”VAddAssocClass
AddOpposite
AddOpposite.instVAdd
β€”IsCentralVAdd.unop_vadd_eq_vadd
AddOpposite.unop_vadd
vadd_assoc
to₁₂₄ πŸ“–mathematicalβ€”VAddAssocClassβ€”vadd_zero_vadd
vadd_assoc
to₁₃₄ πŸ“–mathematicalβ€”VAddAssocClassβ€”vadd_zero_vadd
vadd_assoc
to₂₃₄ πŸ“–mathematicalHVAdd.hVAdd
instHVAdd
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
VAddAssocClass
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
β€”vadd_zero_vadd
vadd_assoc
vadd_assoc πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”β€”

VAddCommClass

Theorems

NameKindAssumesProvesValidatesDepends On
of_add_vadd_zero πŸ“–mathematicalAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
HVAdd.hVAdd
instHVAdd
AddZero.toZero
VAddCommClass
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”vadd_eq_add
add_assoc
op_left πŸ“–mathematicalβ€”VAddCommClass
AddOpposite
β€”IsCentralVAdd.unop_vadd_eq_vadd
vadd_comm
op_right πŸ“–mathematicalβ€”VAddCommClass
AddOpposite
β€”IsCentralVAdd.unop_vadd_eq_vadd
vadd_comm
vadd_comm πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”β€”

(root)

Definitions

NameCategoryTheorems
AddAction πŸ“–CompData
2 mathmath: SubAddAction.ofFixingAddSubgroup_of_eq_bijective, SubAddAction.ofFixingAddSubgroup_of_eq_apply
AddSemigroupAction πŸ“–CompDataβ€”
IsCancelSMul πŸ“–CompData
8 mathmath: Submonoid.instIsCancelSMulSubtypeMem, instIsCancelSMulOfIsOrderedCancelSMul, isCancelSMul_iff_stabilizer_eq_bot, SetLike.instIsCancelSMulSubtypeMem, isQuotientCoveringMap_iff_isCoveringMap_and, instIsCancelSMul, IsQuotientCoveringMap.isCancelSMul, isCancelSMul_iff_eq_one_of_smul_eq
IsCancelVAdd πŸ“–CompData
8 mathmath: isAddQuotientCoveringMap_iff_isCoveringMap_and, AddSubmonoid.instIsCancelVAddSubtypeMem, IsAddQuotientCoveringMap.isCancelVAdd, instIsCancelVAddOfIsOrderedCancelVAdd, isCancelVAdd_iff_stabilizer_eq_bot, isCancelVAdd_iff_eq_zero_of_vadd_eq, instIsCancelVAdd, SetLike.instIsCancelVAddSubtypeMem
IsCentralScalar πŸ“–CompData
69 mathmath: Matrix.isCentralScalar, ZeroAtInftyContinuousMap.instIsCentralScalar, Prod.isCentralScalar, Function.Embedding.instIsCentralScalar, BoundedContinuousFunction.instIsCentralScalar, Filter.isCentralScalar, NormedAddGroupHom.isCentralScalar, ZeroHom.instIsCentralScalar, AdicCompletion.instIsCentralScalar, LinearMap.instIsCentralScalar, Set.isCentralScalar, MeasureTheory.AEEqFun.instIsCentralScalar, Equiv.isCentralScalar, AddSubmonoid.pointwise_isCentralScalar, Subgroup.pointwise_isCentralScalar, Subsemiring.pointwise_central_scalar, AffineMap.isCentralScalar, Sum.instIsCentralScalar, ValuationSubring.pointwise_central_scalar, SeparationQuotient.instIsCentralScalar, MeasureTheory.OuterMeasure.instIsCentralScalar, Polynomial.isCentralScalar, Finset.isCentralScalar, AddMonoid.End.isCentralScalar, MulOpposite.instIsCentralScalar, Option.instIsCentralScalar, DoubleCentralizer.instIsCentralScalar, OreLocalization.instIsCentralScalar, CompactlySupportedContinuousMap.instIsCentralScalar, Finsupp.isCentralScalar, CStarMatrix.instIsCentralScalar, TrivSqZeroExt.isCentralScalar, LieSubmodule.Quotient.isCentralScalar, Derivation.instIsCentralScalar, AddMonoidHom.instIsCentralScalar, Subring.pointwise_central_scalar, Submonoid.pointwise_isCentralScalar, MeasureTheory.Lp.instIsCentralScalar, Complex.instIsCentralScalarOfReal, Unitization.instIsCentralScalar, Submodule.Quotient.isCentralScalar, Submodule.isCentralScalar, SubMulAction.isCentralScalar, PUnit.instIsCentralScalar, ContinuousMap.instIsCentralScalar, CentroidHom.instIsCentralScalar, Ideal.pointwise_central_scalar, FreeLieAlgebra.instIsCentralScalar, SkewMonoidAlgebra.instIsCentralScalar, ContinuousAlternatingMap.instIsCentralScalar, RingCon.instIsCentralScalarQuotient, ContinuousMultilinearMap.instIsCentralScalar, UniformSpace.Completion.instIsCentralScalar, MonoidAlgebra.isCentralScalar, MvPolynomial.isCentralScalar, Con.instIsCentralScalar, ContinuousLinearMap.isCentralScalar, MeasureTheory.Measure.instIsCentralScalar, RestrictScalars.isCentralScalar, ULift.instIsCentralScalar, AddSubgroup.pointwise_isCentralScalar, LieSubalgebra.instIsCentralScalarSubtypeMem, AddMonoidAlgebra.isCentralScalar, QuadraticAlgebra.instIsCentralScalar, ContinuousAffineMap.instIsCentralScalar, TensorProduct.instIsCentralScalar, AlternatingMap.instIsCentralScalar, Submodule.pointwiseCentralScalar, CommSemigroup.isCentralScalar
IsCentralVAdd πŸ“–CompData
14 mathmath: Finset.isCentralVAdd, AddCommSemigroup.isCentralVAdd, PUnit.instIsCentralVAdd, AddOpposite.instIsCentralVAdd, SeparationQuotient.instIsCentralVAdd, Filter.isCentralVAdd, SubAddAction.isCentralVAdd, UniformSpace.Completion.instIsCentralVAdd, Option.instIsCentralVAdd, AddOreLocalization.instIsCentralVAdd, Prod.isCentralVAdd, Sum.instIsCentralVAdd, Equiv.isCentralVAdd, Set.isCentralVAdd
IsLeftCancelSMul πŸ“–CompData
5 mathmath: instIsLeftCancelSMul_1, Submonoid.instIsLeftCancelSMulSubtypeMem, instIsLeftCancelSMul, SetLike.instIsLeftCancelSMulSubtypeMem, IsCancelSMul.toIsLeftCancelSMul
IsLeftCancelVAdd πŸ“–CompData
5 mathmath: instIsLeftCancelVAdd_1, AddSubmonoid.instIsLeftCancelVAddSubtypeMem, IsCancelVAdd.toIsLeftCancelVAdd, instIsLeftCancelVAdd, SetLike.instIsLeftCancelVAddSubtypeMem
IsScalarTower πŸ“–CompData
342 mathmath: Submodule.instIsScalarTowerQuotientIdealSubtypeMemTorsionBySetCoe, Ideal.Quotient.isScalarTower, Nonneg.instIsScalarTower, Finset.isScalarTower, AlgebraicGeometry.StructureSheaf.instIsScalarTowerCarrierStalkCommRingCatStructurePresheafInCommRingCatCarrierAbPresheafOpensCarrierTopModuleStructurePresheaf, QuaternionAlgebra.instIsScalarTower, Module.Basis.instIsScalarTower, MeasureTheory.Lp.instIsScalarTower, NonUnitalNonAssocSemiring.nat_isScalarTower, NumberField.RingOfIntegers.inst_isScalarTower, Submodule.isScalarTower, QuadraticAlgebra.instIsScalarTower, Complex.UnitDisc.instIsScalarTower_circle, MvPolynomial.isScalarTower_right, OrderDual.instIsScalarTower', instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeCompl, AddCommGroup.intIsScalarTower, NonUnitalSubalgebra.instIsScalarTower', IntermediateField.isScalarTower_mid', ContinuousMap.instIsScalarTower, FractionRing.instIsScalarTower, AddMonoidAlgebra.isScalarTower_self, ContinuousMapZero.instIsScalarTower, instIsScalarTowerPolynomial_1, MulOpposite.instIsScalarTower, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, Complex.instIsScalarTowerOfReal, AdicCompletion.instIsScalarTower_1, ZeroAtInftyContinuousMap.instIsScalarTower, Submonoid.isScalarTower, Module.Basis.isScalarTower_of_nonempty, Finset.isScalarTower'', IsScalarTower.opposite_mid, IsScalarTower.right, TrivSqZeroExt.isScalarTower, MvPolynomial.instIsScalarTower, Lex.instIsScalarTower'', instIsScalarTowerAtPrimeFractionRing_1, Lex.instIsScalarTower, TensorProduct.isScalarTower_right, RightPreLieAlgebra.toIsScalarTower, instIsScalarTowerAtPrimeLocalizationAlgebraMapSubmonoidPrimeCompl, Ideal.Quotient.tower_quotient_map_quotient, KaehlerDifferential.isScalarTower', RingCon.isScalarTower_right, Con.instIsScalarTower, IntermediateField.isScalarTower, Matrix.isScalarTower, QuadraticMap.instIsScalarTower, AlgebraicGeometry.functionField_isScalarTower, IsScalarTower.subsemiring, Subalgebra.inclusion.isScalarTower_left, IsScalarTower.to₁₃₄, DoubleCentralizer.instIsScalarTower, Circle.instIsScalarTower, instIsScalarTowerAtPrimeLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, LinearPMap.instIsScalarTower, isScalarTower_closedBall_closedBall_closedBall, isScalarTower_sphere_closedBall_closedBall, IncidenceAlgebra.instIsScalarTower, IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', KaehlerDifferential.instIsScalarTowerTensorProduct, Option.instIsScalarTowerOfSMul, LieDerivation.instIsScalarTower, Algebra.Extension.instIsScalarTowerH1CotangentOfCotangent, Subsemiring.isScalarTower, WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial, Prod.isScalarTowerBoth, Complex.UnitDisc.instIsScalarTower_circle_circle, IntermediateField.instIsScalarTowerSubtypeMem, AlgebraicGeometry.instIsScalarTowerObjOppositeOpensCarrierTopValStructureSheafInType, Module.AEval.instIsScalarTowerOrigPolynomial, IntermediateField.isScalarTower_bot, SemimoduleCat.Algebra.instIsScalarTowerCarrier, Finset.isScalarTower', Algebra.Presentation.instIsScalarTowerCore, Polynomial.isScalarTower, FiniteField.instIsScalarTowerZModExtension, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, TestFunction.instIsScalarTower, IsScalarTower.of_smul_one_mul, Units.instIsScalarTower, ULift.isScalarTower, FractionRing.instIsScalarTower_1, Algebra.IsSmoothAt.exists_isStandardEtale_mvPolynomial, RingQuot.instIsScalarTower, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, IsLocalization.instIsScalarTowerLocalizationAtPrime, SeparationQuotient.instIsScalarTower, RingCon.instIsScalarTowerQuotient, ENNReal.instIsScalarTowerNNReal, Module.Basis.isScalarTower_finsupp, Subalgebra.isScalarTower_right, NonUnitalNonAssocRing.int_isScalarTower, Algebra.Extension.instIsScalarTowerRing, KaehlerDifferential.isScalarTower_of_tower, RatFunc.instIsScalarTowerOfPolynomial_1, AddMonoidAlgebra.isScalarTower, ModularGroup.SL_to_GL_tower, Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, Seminorm.instIsScalarTowerOfReal, LieRinehartAlgebra.toIsScalarTower, PowerSeries.instIsScalarTower, Algebra.Extension.instIsScalarTowerCotangent, PUnit.instIsScalarTowerOfSMul, Ideal.instIsScalarTowerQuotientHPowKerRingHomAlgebraMapOfNat, isScalarTower_sphere_sphere_sphere, Algebra.Extension.isScalarTower, IsLocalRing.ResidueField.instIsScalarTower_1, Ideal.Factors.isScalarTower, LinearMap.isScalarTower_of_injective, ModularForm.instIsScalarTowerComplex, Polynomial.Gal.instIsScalarTowerSplittingField, BoundedContinuousFunction.instIsScalarTower_1, Algebra.TensorProduct.isScalarTower_right, instIsScalarTowerPolynomial, instIsScalarTowerUniformOnFun, IntermediateField.instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, Polynomial.SplittingFieldAux.scalar_tower', normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1, instIsScalarTowerAtPrimeFractionRing, ValuationSubring.instIsScalarTowerSubtypeMemValuationSubringWithZeroMultiplicativeInt, PolynomialModule.isScalarTower', instIsScalarTowerUniformFun, Derivation.instIsScalarTower, SkewMonoidAlgebra.instIsScalarTower, isScalarTower_closedBall_ball_ball, AffineBasis.instIsScalarTower, HahnModule.instIsScalarTowerHahnSeries_1, ModuleCat.instIsScalarTowerLocalizationCarrierLocalizedModule, IsDedekindDomain.FiniteAdeleRing.instIsScalarTower, HomogeneousLocalization.instIsScalarTowerSubtypeMemOfNatLocalization, Algebra.Generators.instIsScalarTowerRing, Representation.instIsScalarTowerMonoidAlgebraAsModule, AdjoinRoot.isScalarTower_right, CentroidHom.instIsScalarTower, Submodule.isScalarTower', MonoidAlgebra.isScalarTower_monoidAlgebra, AdicCompletion.instIsScalarTowerQuotientIdealHSMulTopSubmodule, IsScalarTower.rat, Semigroup.isScalarTower, RatFunc.instIsScalarTowerOfIsDomainOfPolynomial, Filter.isScalarTower, IsScalarTower.subalgebra, Submonoid.instIsScalarTowerSubtypeMem, WithLp.instIsScalarTower, IsScalarTower.op_right, WeakBilin.instIsScalarTower, IsScalarTower.to₂₃₄, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure, Subalgebra.isScalarTower_left, WithVal.instIsScalarTower, WithVal.instIsScalarTower_1, Matrix.Module.instIsScalarTowerForall, Submodule.instIsScalarTowerQuotientSpanSingletonSetSubtypeMemTorsionBy, LieAdmissibleAlgebra.toIsScalarTower, Valuation.HasExtension.instIsScalarTower_valuationSubring', IsScalarTower.of_algebraMap_eq', CyclotomicRing.instIsScalarTowerCyclotomicField, IsScalarTower.left, SetLike.instIsScalarTower, OrderDual.instIsScalarTower'', AdjoinRoot.instIsScalarTower, RatFunc.instIsScalarTowerPolynomial, Real.isScalarTower, isScalarTower_sphere_sphere_closedBall, PointedContMDiffMap.instIsScalarTowerSomeENatTop, IntermediateField.instIsScalarTowerSubtypeMem_1, CentroidHom.instIsScalarTower_1, Equiv.isScalarTower, Complex.UnitDisc.instIsScalarTower_closedBall, isScalarTower_sphere_sphere_ball, PadicComplex.instIsScalarTowerPadicPadicAlgCl, Subgroup.instIsScalarTowerSubtypeMem, SMul.comp.isScalarTower, ContinuousMultilinearMap.instIsScalarTower, Subalgebra.inclusion.isScalarTower_right, Ideal.Quotient.isScalarTower_of_liesOver, isScalarTower_sphere_closedBall_ball, Subalgebra.isScalarTower_mid, PolynomialModule.instIsScalarTower, TensorProduct.isScalarTower_left, Set.isScalarTower, Module.End.instIsScalarTower, OreLocalization.instIsScalarTower_1, RatFunc.instIsScalarTowerOfPolynomial, IsLocalRing.instIsScalarTowerResidueFieldCotangentSpace, Lex.instIsScalarTower', Algebra.Extension.instIsScalarTowerRing_1, PointedContMDiffMap.instIsScalarTowerSomeENatTopContMDiffMapModelWithCornersSelf, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, ULift.isScalarTower'', Rat.instIsScalarTowerRight, ValuationSubring.ofPrime_scalar_tower, IsScalarTower.of_compHom, instIsScalarTowerCyclotomicField, IsScalarTower.to₁₂₃, LinearMap.instIsScalarTower, CuspForm.instIsScalarTowerComplex, MatrixModCat.isScalarTower_toModuleCat, Matrix.instIsScalarTowerForall, Units.isScalarTower', ContinuousLinearMap.isScalarTower, IsLocalization.instIsScalarTowerAtPrimeFractionRing, Ring.instIsScalarTowerNormalClosure, IsLocalizedModule.isScalarTower_module, Localization.AtPrime.instIsScalarTower_1, Localization.AtPrime.instIsScalarTower, IntermediateField.isScalarTower_over_bot, Submodule.Quotient.isScalarTower, Module.IsTorsionBySet.isScalarTower, LocalizedModule.instIsScalarTower, RestrictScalars.isScalarTower, LieAlgebra.isScalarTower, Submodule.restrictScalars.isScalarTower, IsScalarTower.of_mclosure_eq_top, AddCommMonoid.nat_isScalarTower, OrderDual.instIsScalarTower, AddGroupSeminorm.isScalarTower, PUnit.instIsScalarTower, Algebra.TensorProduct.right_isScalarTower, MvPowerSeries.instIsScalarTower, MvPolynomial.isScalarTower, IsScalarTower.of_algebraMap_eq, instIsScalarTowerTensorAlgebra, LinearEquiv.isScalarTower, SkewMonoidAlgebra.isScalarTower_self, AlgebraicClosure.instIsScalarTower, Matrix.Semiring.isScalarTower, Polynomial.instIsScalarTowerElemRootSet, IsLocalRing.ResidueField.instIsScalarTower, Subfield.instIsScalarTowerSubtypeMem, instIsScalarTowerQuotientIdealResidueField, IntermediateField.fixedField.isScalarTower, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, NormedAddGroupHom.isScalarTower, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, IsScalarTower.complexToReal, Subalgebra.instIsScalarTowerSubtypeMem, Filter.isScalarTower'', PiTensorProduct.isScalarTower', LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime, MeasureTheory.Measure.instIsScalarTower, AddMonoid.End.isScalarTower, NumberField.RingOfIntegers.instIsScalarTower, HahnSeries.instIsScalarTower, WithCStarModule.instIsScalarTower, NumberField.RingOfIntegers.instIsScalarTower_1, NonUnitalCStarAlgebra.toIsScalarTower, IsScalarTower.of_commMonoid, Unitary.instIsScalarTowerSubtypeMemSubmonoidUnitary, isScalarTower_sphere_ball_ball, GradedMonoid.isScalarTower_right, NonarchAddGroupSeminorm.instIsScalarTowerOfReal, CauSeq.instIsScalarTower, BoundedContinuousFunction.instIsScalarTower, ZeroHom.instIsScalarTower, MonoidAlgebra.isScalarTower_self, NNRat.instIsScalarTowerRight, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, Matrix.instIsScalarTowerMulOppositeForallOfSMulCommClass, IsScalarTower.op_left, NonUnitalStarSubalgebra.instIsScalarTower, NonUnitalSubalgebra.instIsScalarTowerSubtypeMem, Unitization.instIsScalarTower, HahnModule.instIsScalarTowerHahnSeries, isScalarTower_of_section_of_ker_sqZero, RatFunc.isScalarTower_liftAlgebra, Prod.isScalarTower, FractionRing.isScalarTower_liftAlgebra, IsScalarTower.to₁₂₄, OreLocalization.instIsScalarTower, IsScalarTower.subalgebra', isScalarTower_iff_smulCommClass_of_commMonoid, instIsScalarTowerLocalizationAlgebraMapSubmonoid, Module.End.apply_isScalarTower, LieSubalgebra.instIsScalarTowerSubtypeMem, MonoidAlgebra.isScalarTower, AdicCompletion.instIsScalarTower, SubMulAction.isScalarTower, SkewPolynomial.instIsScalarTower, WeakSpace.instIsScalarTower, KaehlerDifferential.instIsScalarTowerTensorProduct_1, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, Quaternion.instIsScalarTower, ULift.isScalarTower', Valuation.HasExtension.instIsScalarTower_valuationSubring, LeftPreLieAlgebra.toIsScalarTower, Algebra.Extension.instIsScalarTowerRing_2, TrivSqZeroExt.instIsScalarTower, isScalarTower_closedBall_closedBall_ball, ContinuousMapZero.instIsScalarTower', CliffordAlgebra.instIsScalarTower, Polynomial.isScalarTower_right, IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, MeasureTheory.AEEqFun.instIsScalarTower, MeasureTheory.SimpleFunc.instIsScalarTower, IsLocalization.localization_isScalarTower_of_submonoid_le, AddMonoidHom.instIsScalarTower, Function.Embedding.instIsScalarTower, GroupSeminorm.instIsScalarTowerOfReal, ZMod.instIsScalarTower, ModuleCat.isScalarTower_of_algebra_moduleCat, SchwartzMap.instIsScalarTower, ModuleCat.Algebra.instIsScalarTowerCarrier, IsScalarTower.of_algebraMap_smul, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, MeasureTheory.OuterMeasure.instIsScalarTower, Ideal.Quotient.isScalarTower_right, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeCompl_1, Finsupp.isScalarTower, IsScalarTower.nnrat, FreeAlgebra.instIsScalarTower, LaurentPolynomial.instIsScalarTowerPolynomial, SetLike.instIsScalarTowerSubtypeMem, IsLocalRing.instIsScalarTowerResidueField, SubMulAction.isScalarTower', Units.isScalarTower'_left, TensorProduct.isScalarTower, CompactlySupportedContinuousMap.instIsScalarTower, ContinuousAlternatingMap.instIsScalarTower, smooth_functions_tower, CentroidHom.isScalarTowerRight, Complex.UnitDisc.instIsScalarTower_closedBall_closedBall, Sum.instIsScalarTower, NonUnitalStarSubalgebra.instIsScalarTower', KaehlerDifferential.instIsScalarTowerTensorProduct_2, Subring.instIsScalarTowerSubtypeMem, IsScalarTower.of_algHom, Filter.isScalarTower', NonUnitalCommCStarAlgebra.toIsScalarTower, PiTensorProduct.instIsScalarTower, NNReal.instIsScalarTowerOfReal, UniformSpace.Completion.instIsScalarTower, ContinuousMap.instIsScalarTower_1, Set.isScalarTower'', Submodule.instIsScalarTower, IntermediateField.isScalarTower_mid, CStarMatrix.instIsScalarTower, AddMonoidAlgebra.vaddAssocClass_addMonoidAlgebra, Valuation.HasExtension.instIsScalarTowerInteger, Set.isScalarTower'
MulDistribMulAction πŸ“–CompDataβ€”
SMulCommClass πŸ“–CompData
271 mathmath: SetLike.instSMulCommClass, LeftPreLieAlgebra.toSMulCommClass, OrderDual.instSMulCommClass'', Prod.smulCommClass, Algebra.TensorProduct.instSMulCommClassTensorProduct, Quaternion.instSMulCommClass, RingCon.smulCommClass, DomMulAct.instSMulCommClassSubtypeAEEqFunMemAddSubgroupLp_1, Subring.center.smulCommClass_right, Function.Injective.smulCommClass, RingCon.instSMulCommClassQuotient, ContinuousMapZero.instSMulCommClass, Rat.instSMulCommClass, ZeroHom.instSMulCommClass, IsScalarTower.to_smulCommClass', TwoSidedIdeal.instSMulCommClassMulOppositeSubtypeMem, Subring.instSMulCommClassSubtypeMemCenter, Algebra.to_smulCommClass, SMul.comp.smulCommClass', Matrix.Semiring.smulCommClass, Complex.UnitDisc.instSMulCommClass_closedBall_circle, Complex.UnitDisc.instSMulCommClass_closedBall_left, Filter.smulCommClass, instSMulCommClass_sphere_sphere_sphere, ConjAct.unitsSMulCommClass', AlgEquiv.apply_smulCommClass', BoundedContinuousFunction.instSMulCommClass_1, Set.smulCommClass, MeasureTheory.AEEqFun.instSMulCommClass, ContinuousLinearMap.applySMulCommClass', LieDerivation.instSMulCommClass, Finsupp.smulCommClass, Subgroup.center.smulCommClass_right, DomMulAct.instSMulCommClassMonoidHom, SMulCommClass.of_commMonoid, NNRat.instSMulCommClass', NormedAddGroupHom.smulCommClass, Module.End.apply_smulCommClass', ConjAct.unitsSMulCommClass, HahnSeries.instSMulCommClass, MonoidAlgebra.smulCommClass, Subgroup.smulCommClass_right, Algebra.TensorProduct.sMulCommClass_right, BoundedContinuousFunction.instSMulCommClass_2, Unitization.instSMulCommClass, Sum.instSMulCommClass, instSMulCommClassMatrixFinOfNatNatProd, Units.smulCommClass_left, AddMonoid.nat_smulCommClass', MonoidAlgebra.smulCommClass_self, LieAdmissibleAlgebra.toSMulCommClass, ConjAct.smulCommClassβ‚€, UniformSpace.Completion.instSMulCommClassOfUniformContinuousConstSMul, IntermediateField.smulCommClass_left, LinearMap.instSMulCommClass, Polynomial.instSMulCommClassElemRootSet, Submodule.instSMulCommClass, CentroidHom.instSMulCommClass_2, AddMonoidAlgebra.smulCommClass, Matrix.instSMulCommClassForall_1, FreeAlgebra.instSMulCommClass, Complex.UnitDisc.instSMulCommClass_circle_left, MvPolynomial.smulCommClass, Function.smulCommClass, AddMonoidHom.instSMulCommClass, Subfield.smulCommClass_left, FixedPoints.instSMulCommClassSubtypeMemSubfieldSubfield, Finset.smulCommClass_finset, SMul.comp.smulCommClass, PiTensorProduct.instSMulCommClass, SMulCommClass.op_left, Finset.smulCommClass_finset'', Algebra.TensorProduct.instSMulCommClassTensorProduct_1, CompactlySupportedContinuousMap.instSMulCommClass, ConjAct.smulCommClassβ‚€', AddMonoidAlgebra.smulCommClass_symm_self, ConjAct.smulCommClass', Filter.smulCommClass_filter'', Semigroup.opposite_smulCommClass', RightPreLieAlgebra.toSMulCommClass, NNReal.smulCommClass_left, DomMulAct.instSMulCommClassForall_1, instSMulCommClassUniformOnFun, Circle.instSMulCommClass_left, Filter.smulCommClass_filter, OreLocalization.instSMulCommClass, Rat.instSMulCommClass', ContinuousLinearMap.smulCommClass, RingQuot.instSMulCommClass, instSMulCommClass_sphere_closedBall_closedBall, DomMulAct.instSMulCommClassDistribMulActionHomId, Con.instSMulCommClass, DomMulAct.instSMulCommClassSubtypeAEEqFunMemAddSubgroupLp_2, Subring.smulCommClass_right, Submonoid.instSMulCommClassSubtypeMemCenter_1, DomMulAct.instSMulCommClassMulActionHomId, Function.Embedding.instSMulCommClass, GradedMonoid.smulCommClass_right, SMulCommClass.symm, BoundedContinuousFunction.instSMulCommClass, SMulCommClass.complexToReal, MvPolynomial.smulCommClass_right, Circle.instSMulCommClass_right, QuadraticMap.instSMulCommClass, DomMulAct.instSMulCommClassForall_2, MeasureTheory.OuterMeasure.instSMulCommClass, NonUnitalSubalgebra.instSMulCommClass, instSMulCommClassUniformFun, Submonoid.instSMulCommClassSubtypeMemCenter, Subalgebra.smulCommClass_right, Subfield.smulCommClass_right, MeasureTheory.Measure.instSMulCommClassDomMulActNNReal, CliffordAlgebra.instSMulCommClass, LinearEquiv.apply_smulCommClass, KaehlerDifferential.instSMulCommClassTensorProduct_1, AddGroup.int_smulCommClass', HahnModule.SMulCommClass, RingCon.smulCommClass', LieAlgebra.smulCommClass, PUnit.instSMulCommClass, Subsemiring.center.smulCommClass_right, Units.smulCommClass_right, Matrix.instSMulCommClassMulOppositeForallOfIsScalarTower_1, ConjAct.smulCommClass, TrivSqZeroExt.smulCommClass, smulCommClass_self, Set.smulCommClass_set, Complex.instSMulCommClassOfReal, ENNReal.smulCommClass_left, PiTensorProduct.smulCommClass', Complex.UnitDisc.instSMulCommClass_closedBall_right, CentroidHom.instSMulCommClass_1, SemimoduleCat.Algebra.instSMulCommClassCarrier, Matrix.smulCommClass, SMulCommClass.rat', ContinuousMap.instSMulCommClass_2, KaehlerDifferential.instSMulCommClassTensorProduct, Set.smulCommClass_set', SMulCommClass.opposite_mid, AffineBasis.instSMulCommClass, Subgroup.center.smulCommClass_left, DomMulAct.instSMulCommClassAddMonoidHom, Subsemiring.instSMulCommClassSubtypeMemCenter_1, ZeroAtInftyContinuousMap.instSMulCommClass, MeasureTheory.Measure.instSMulCommClassNNRealDomMulAct, ContinuousLinearMap.applySMulCommClass, NNRat.instSMulCommClass, Lex.instSMulCommClass', NNReal.smulCommClass_right, SMulCommClass.op_right, OrderDual.instSMulCommClass', Units.smulCommClass', Submonoid.center.smulCommClass_left, CentroidHom.instSMulCommClass, AddMonoid.End.smulCommClass, Subsemiring.smulCommClass_left, LinearEquiv.apply_smulCommClass', Module.End.instSMulCommClass', Module.End.apply_smulCommClass, Complex.UnitDisc.instSMulCommClass_circle_right, Finset.smulCommClass, RootPairing.Equiv.instSMulCommClassAut, Submonoid.smulCommClass_left, ContinuousMapZero.instSMulCommClass', NonUnitalSubalgebra.instSMulCommClass', Localization.instSMulCommClassOfIsScalarTower, Submonoid.center.smulCommClass_right, Derivation.instSMulCommClass, IsScalarTower.to_smulCommClass, Unitary.instSMulCommClassSubtypeMemSubmonoidUnitary, ContinuousMap.instSMulCommClass_1, PUnit.instSMulCommClass_1, DomMulAct.instSMulCommClassForall, DomMulAct.instSMulCommClassAddMonoidHom_1, SMulCommClass.of_mul_smul_one, Filter.smulCommClass_filter', OrderDual.instSMulCommClass, Semigroup.opposite_smulCommClass, QuadraticAlgebra.instSMulCommClass, Prod.smulCommClassBoth, Subalgebra.smulCommClass_left, MeasureTheory.Lp.instSMulCommClass, NonUnitalStarSubalgebra.instSMulCommClass', Subsemiring.instSMulCommClassSubtypeMemCenter, instSMulCommClass_sphere_ball_ball, Module.End.instSMulCommClass, instSMulCommClass, Equiv.smulCommClass, WithLp.instSMulCommClass, AddGroup.int_smulCommClass, Subring.center.smulCommClass_left, Matrix.instSMulCommClassForall, MonoidAlgebra.smulCommClass_symm_self, Option.instSMulCommClass, CStarMatrix.instSMulCommClass, DomMulAct.instSMulCommClassSubtypeAEEqFunMemAddSubgroupLp, AdjoinRoot.instSMulCommClass, DomMulAct.instSMulCommClassAEEqFun_2, Ideal.Quotient.smulCommClass', Submonoid.instSMulCommClassSubtypeMem_1, DomMulAct.instSMulCommClassAEEqFun_1, SeparationQuotient.instSMulCommClass, ContinuousMultilinearMap.instSMulCommClass, Function.Surjective.smulCommClass, SkewMonoidAlgebra.instSMulCommClass, OreLocalization.instSMulCommClass_1, Matrix.instSMulCommClassMulOppositeForallOfIsScalarTower, instSMulCommClass_closedBall_closedBall_ball, Complex.UnitDisc.instSMulCommClass_circle_closedBall, LinearMap.instSMulCommClassDomMulAct, NonUnitalCommCStarAlgebra.toSMulCommClass, Ideal.Quotient.smulCommClass, IntermediateField.smulCommClass_right, instSMulCommClassSubtypeMemSubalgebraIntegralClosure, Subring.instSMulCommClassSubtypeMemCenter_1, Submonoid.smulCommClass_right, isScalarTower_iff_smulCommClass_of_commMonoid, ModuleCat.Algebra.instSMulCommClassCarrier, Submodule.Quotient.smulCommClass, AlternatingMap.instSMulCommClass, Polynomial.smulCommClass, Submodule.instSMulCommClass_1, SkewPolynomial.instSMulCommClass, ContinuousAlternatingMap.instSMulCommClass, FixedPoints.smulCommClass', Set.smulCommClass_set'', SMulCommClass.nnrat, instSMulCommClass_sphere_closedBall_ball, Subsemiring.smulCommClass_right, MeasureTheory.Measure.instSMulCommClass, LinearPMap.instSMulCommClass, WithCStarModule.instSMulCommClass, SchwartzMap.instSMulCommClass, ModuleCat.sMulCommClass_mk, Submonoid.instSMulCommClassSubtypeMem, instSMulCommClass_sphere_sphere_closedBall, DomMulAct.instSMulCommClassAEEqFun, AdicCompletion.instSMulCommClass, ENNReal.smulCommClass_right, instSMulCommClassTensorAlgebra, instSMulCommClass_closedBall_closedBall_closedBall, NonUnitalStarSubalgebra.instSMulCommClass, SetLike.instSMulCommClassSubtypeMem_1, Subgroup.smulCommClass_left, SMulCommClass.nnrat', RootPairing.Equiv.instSMulCommClassMulOppositeAut, Submodule.instSMulCommClassSubtypeMemTorsion', Lex.instSMulCommClass'', Multiplicative.smulCommClass, AddMonoid.nat_smulCommClass, instSMulCommClass_sphere_sphere_ball, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, QuaternionAlgebra.instSMulCommClass, NonUnitalCStarAlgebra.toSMulCommClass, Finset.smulCommClass_finset', AddMonoidAlgebra.smulCommClass_self, SMulCommClass.of_mclosure_eq_top, IsGaloisGroup.commutes, DoubleCentralizer.instSMulCommClass, Module.Basis.instSMulCommClass, Subring.smulCommClass_left, SMulCommClass.rat, ContinuousMap.instSMulCommClass, SetLike.instSMulCommClassSubtypeMem, MeasureTheory.SimpleFunc.instSMulCommClass, SetLike.instSMulCommClassSubtypeMem_2, TensorProduct.smulCommClass_left, AlgEquiv.apply_smulCommClass, Lex.instSMulCommClass, Subsemiring.center.smulCommClass_left, MulOpposite.instSMulCommClass
SMulDistribClass πŸ“–CompData
2 mathmath: NumberField.RingOfIntegers.instSMulDistribClass, instSMulDistribClassSubtypeMemSubalgebraIntegralClosure
SemigroupAction πŸ“–CompDataβ€”
VAddAssocClass πŸ“–CompData
45 mathmath: VAddAssocClass.of_mclosure_eq_top, AddSemigroup.vaddAssocClass, Finset.vaddAssocClass'', Lex.instVAddAssocClass', VAddAssocClass.to₁₂₃, AddOpposite.instVAddAssocClass, VAddAssocClass.opposite_mid, Filter.vaddAssocClass, VAddAssocClass.to₁₃₄, Filter.vaddAssocClass'', AddOreLocalization.instVAddAssocClass, PUnit.instVAddAssocClassOfVAdd, VAddAssocClass.op_right, Equiv.vaddAssocClass, Finset.vaddAssocClass, AddUnits.vaddAssocClass', SubAddAction.vaddAssocClass', VAddAssocClass.left, AddOreLocalization.instVAddAssocClass_1, VAddAssocClass.op_left, VAddAssocClass.of_vadd_zero_add, VAddAssocClass.to₂₃₄, Set.vaddAssocClass, Option.instVAddAssocClassOfVAdd, AddSubgroup.instVAddAssocClassSubtypeMem, Lex.instVAddAssocClass'', AddUnits.vaddAssocClass'_left, UniformSpace.Completion.instVAddAssocClass, AddSubmonoid.instVAddAssocClassSubtypeMem, Lex.instVAddAssocClass, OrderDual.instVAddAssocClass, Set.vaddAssocClass'', AddSubmonoid.vaddAssocClass, Prod.vaddAssocClass, SubAddAction.vaddAssocClass, VAdd.comp.vaddAssocClass, Finset.vaddAssocClass', Set.vaddAssocClass', OrderDual.instVAddAssocClass'', VAddAssocClass.to₁₂₄, AddUnits.instVAddAssocClass, WithLp.instVAddAssocClass, SeparationQuotient.instVAddAssocClass, Filter.vaddAssocClass', OrderDual.instVAddAssocClass'
VAddCommClass πŸ“–CompData
65 mathmath: VAdd.comp.vaddCommClass, AddSubgroup.vaddCommClass_left, VAdd.comp.vaddCommClass', VAddCommClass.of_add_vadd_zero, Filter.vaddCommClass_filter'', DomAddAct.instVAddCommClassAEEqFun_2, Additive.vaddCommClass, DomAddAct.instVAddCommClassForall_1, Function.vaddCommClass, Option.instVAddCommClass, SetLike.instVAddCommClassSubtypeMem_1, SetLike.instVAddCommClassSubtypeMem_2, AddSubgroup.vaddCommClass_right, Lex.instVAddCommClass'', AddSubmonoid.instVAddCommClassSubtypeMem_1, AddOreLocalization.instVAddCommClass_1, PUnit.instVAddCommClass, Lex.instVAddCommClass', Prod.vaddCommClass, AddSemigroup.opposite_vaddCommClass', AddSubmonoid.instVAddCommClassSubtypeMem, OrderDual.instVAddCommClass'', Lex.instVAddCommClass, ContinuousMap.instVAddCommClass, Function.Surjective.vaddCommClass, DomAddAct.instVAddCommClassForall_2, Finset.vaddCommClass_finset'', Set.vaddCommClass, AddUnits.vaddCommClass_left, Function.Embedding.instVAddCommClass, DomAddAct.instVAddCommClassForall, Filter.vaddCommClass_filter, Finset.vaddCommClass_finset, Filter.vaddCommClass, SetLike.instVAddCommClassSubtypeMem, Equiv.vaddCommClass, AddSubmonoid.vaddCommClass_left, OrderDual.instVAddCommClass', PUnit.instVAddCommClass_1, OrderDual.instVAddCommClass, Function.Injective.vaddCommClass, VAddCommClass.opposite_mid, Set.vaddCommClass_set'', AddSemigroup.opposite_vaddCommClass, Sum.instVAddCommClass, Set.vaddCommClass_set, VAddCommClass.of_mclosure_eq_top, WithLp.instVAddCommClass, Set.vaddCommClass_set', Submodule.vaddCommClass, AddUnits.vaddCommClass_right, vaddCommClass_self, AddOreLocalization.instVAddCommClass, VAddCommClass.op_right, SeparationQuotient.instVAddCommClass, AddOpposite.instVAddCommClass, Finset.vaddCommClass_finset', Prod.vaddCommClassBoth, UniformSpace.Completion.instVAddCommClassOfUniformContinuousConstVAdd, AddSubmonoid.vaddCommClass_right, VAddCommClass.op_left, VAddCommClass.symm, AddUnits.vaddCommClass', Finset.vaddCommClass, Filter.vaddCommClass_filter'

Theorems

NameKindAssumesProvesValidatesDepends On
add_vadd_add_comm πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”vadd_vadd_vadd_comm
add_vadd_comm πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”VAddCommClass.vadd_comm
add_vadd_zero πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
HVAdd.hVAdd
instHVAdd
AddZero.toZero
β€”vadd_eq_add
VAddCommClass.vadd_comm
add_zero
comp_smul_left πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”SemigroupAction.mul_smul
comp_vadd_left πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”AddSemigroupAction.add_vadd
eq_inv_smul_iff πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
DivInvMonoid.toInv
β€”smul_inv_smul
inv_smul_smul
eq_neg_vadd_iff πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
SubNegMonoid.toNeg
β€”vadd_neg_vadd
neg_vadd_vadd
instIsCancelSMul πŸ“–mathematicalβ€”IsCancelSMul
SemigroupAction.toSMul
Monoid.toSemigroup
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”IsLeftCancelMul.mul_left_cancel
LeftCancelSemigroup.toIsLeftCancelMul
mul_right_cancel
RightCancelSemigroup.toIsRightCancelMul
instIsCancelVAdd πŸ“–mathematicalβ€”IsCancelVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”IsLeftCancelAdd.add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
instIsLeftCancelSMul πŸ“–mathematicalβ€”IsLeftCancelSMul
SemigroupAction.toSMul
Monoid.toSemigroup
LeftCancelMonoid.toMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”IsLeftCancelMul.mul_left_cancel
LeftCancelSemigroup.toIsLeftCancelMul
instIsLeftCancelSMul_1 πŸ“–mathematicalβ€”IsLeftCancelSMul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”inv_smul_smul
instIsLeftCancelVAdd πŸ“–mathematicalβ€”IsLeftCancelVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddLeftCancelMonoid.toAddMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”IsLeftCancelAdd.add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
instIsLeftCancelVAdd_1 πŸ“–mathematicalβ€”IsLeftCancelVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
β€”neg_vadd_vadd
inv_smul_eq_iff πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
DivInvMonoid.toInv
β€”smul_inv_smul
inv_smul_smul
inv_smul_smul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
DivInvMonoid.toInv
β€”smul_smul
inv_mul_cancel
one_smul
isScalarTower_iff_smulCommClass_of_commMonoid πŸ“–mathematicalβ€”SMulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
CommMonoid.toMonoid
Monoid.toMulAction
IsScalarTower
β€”IsScalarTower.of_commMonoid
SMulCommClass.of_commMonoid
IsScalarTower.left
mul_smul_comm πŸ“–β€”β€”β€”β€”SMulCommClass.smul_comm
mul_smul_mul_comm πŸ“–β€”β€”β€”β€”smul_smul_smul_comm
mul_smul_one πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
β€”smul_eq_mul
SMulCommClass.smul_comm
mul_one
neg_vadd_eq_iff πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
SubNegMonoid.toNeg
β€”vadd_neg_vadd
neg_vadd_vadd
neg_vadd_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
SubNegMonoid.toNeg
β€”vadd_vadd
neg_add_cancel
zero_vadd
one_smul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”MulAction.one_smul
one_smul_eq_id πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”one_smul
op_smul_eq_mul πŸ“–mathematicalβ€”MulOpposite
Mul.toSMulMulOpposite
MulOpposite.op
β€”β€”
op_vadd_eq_add πŸ“–mathematicalβ€”HVAdd.hVAdd
AddOpposite
instHVAdd
Add.toVAddAddOpposite
AddOpposite.op
β€”β€”
smulCommClass_self πŸ“–mathematicalβ€”SMulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
CommMonoid.toMonoid
MulAction.toSemigroupAction
β€”SemigroupAction.mul_smul
mul_comm
smul_assoc πŸ“–β€”β€”β€”β€”IsScalarTower.smul_assoc
smul_div_assoc πŸ“–mathematicalβ€”DivInvMonoid.toDivβ€”div_eq_mul_inv
smul_mul_assoc
smul_eq_mul πŸ“–β€”β€”β€”β€”β€”
smul_inv πŸ“–mathematicalβ€”DivInvMonoid.toInv
Group.toDivInvMonoid
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
MulAction.toSemigroupAction
β€”inv_eq_of_mul_eq_one_right
smul_mul_smul_comm
IsScalarTower.left
mul_inv_cancel
one_smul
smul_inv_smul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
DivInvMonoid.toInv
β€”smul_smul
mul_inv_cancel
one_smul
smul_iterate πŸ“–mathematicalβ€”Nat.iterate
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toNatPow
β€”pow_zero
one_smul
smul_smul
pow_succ
smul_iterate_apply πŸ“–mathematicalβ€”Nat.iterate
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toNatPow
β€”smul_iterate
smul_mul' πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”MulDistribMulAction.smul_mul
smul_mul_assoc πŸ“–β€”β€”β€”β€”smul_assoc
smul_mul_smul πŸ“–β€”β€”β€”β€”smul_mul_smul_comm
smul_mul_smul_comm πŸ“–β€”β€”β€”β€”SMulCommClass.symm
smul_smul_smul_comm
smul_one_mul πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
β€”smul_mul_assoc
one_mul
smul_one_smul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”smul_assoc
one_smul
smul_pow πŸ“–mathematicalβ€”Monoid.toNatPow
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”pow_zero
one_smul
pow_succ'
smul_mul_smul_comm
IsScalarTower.left
smul_smul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”SemigroupAction.mul_smul
smul_smul_smul_comm πŸ“–β€”β€”β€”β€”smul_assoc
SMulCommClass.smul_comm
smul_zpow πŸ“–mathematicalβ€”DivInvMonoid.toZPow
Group.toDivInvMonoid
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
MulAction.toSemigroupAction
β€”zpow_natCast
smul_pow
zpow_negSucc
smul_inv
vaddCommClass_self πŸ“–mathematicalβ€”VAddCommClass
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
AddAction.toAddSemigroupAction
β€”AddSemigroupAction.add_vadd
add_comm
vadd_add_assoc πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”vadd_assoc
vadd_add_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”vadd_add_vadd_comm
vadd_add_vadd_comm πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”VAddCommClass.symm
vadd_vadd_vadd_comm
vadd_assoc πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”VAddAssocClass.vadd_assoc
vadd_eq_add πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
Add.toVAdd
β€”β€”
vadd_iterate πŸ“–mathematicalβ€”Nat.iterate
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toNatSMul
β€”zero_nsmul
zero_vadd
vadd_vadd
succ_nsmul
vadd_iterate_apply πŸ“–mathematicalβ€”Nat.iterate
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toNatSMul
β€”vadd_iterate
vadd_neg_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
SubNegMonoid.toNeg
β€”vadd_vadd
add_neg_cancel
zero_vadd
vadd_sub_assoc πŸ“–mathematicalβ€”SubNegMonoid.toSub
HVAdd.hVAdd
instHVAdd
β€”sub_eq_add_neg
vadd_add_assoc
vadd_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”AddSemigroupAction.add_vadd
vadd_vadd_vadd_comm πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”vadd_assoc
VAddCommClass.vadd_comm
vadd_zero_add πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
HVAdd.hVAdd
instHVAdd
AddZero.toZero
β€”vadd_add_assoc
zero_add
vadd_zero_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”vadd_assoc
zero_vadd
zero_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”AddAction.zero_vadd
zero_vadd_eq_id πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”zero_vadd

---

← Back to Index