Documentation Verification Report

End

📁 Source: Mathlib/Algebra/Group/Action/End.lean

Statistics

MetricCount
DefinitionsofEndHom, toEndHom, toPermHom, applyMulAction, applyMulAction, applyAddAction, applyMulAction, ofEndHom, toEndHom, toPermHom, applyMulAction, applyMulDistribMulAction, toMulAut, toMulEquiv, mulAutArrow
15
Theoremscoe_toPermHom, toPermHom_apply_apply, toPermHom_apply_symm_apply, toPerm_zero, apply_faithfulSMul, smul_def, applyFaithfulSMul, instIsPretransitive, smul_def, apply_FaithfulSMul, mul_def, one_def, smul_def, coe_toPermHom, toPermHom_apply, toPerm_one, apply_faithfulSMul, smul_def, toMulAut_apply, toMulEquiv_apply, toMulEquiv_symm_apply, mulAutArrow_apply_apply, mulAutArrow_apply_symm_apply
23
Total38

AddAction

Definitions

NameCategoryTheorems
ofEndHom 📖CompOp
toEndHom 📖CompOp
toPermHom 📖CompOp
3 mathmath: toPermHom_apply_symm_apply, toPermHom_apply_apply, coe_toPermHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toPermHom 📖mathematicalDFunLike.coe
AddMonoidHom
Additive
Equiv.Perm
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
AddMonoidHom.instFunLike
toPermHom
toPerm
toPermHom_apply_apply 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
AddMonoidHom
Additive
Equiv.Perm
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
AddMonoidHom.instFunLike
toPermHom
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
toAddSemigroupAction
toPermHom_apply_symm_apply 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
AddMonoidHom
Additive
Equiv.Perm
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
AddMonoidHom.instFunLike
toPermHom
Multiplicative
SemigroupAction.toSMul
Monoid.toSemigroup
Multiplicative.group
MulAction.toSemigroupAction
Multiplicative.mulAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Multiplicative.ofAdd
toPerm_zero 📖mathematicaltoPerm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Equiv.Perm
Equiv.Perm.instOne
Equiv.Perm.ext
zero_vadd

AddAut

Definitions

NameCategoryTheorems
applyMulAction 📖CompOp
2 mathmath: apply_faithfulSMul, smul_def

Theorems

NameKindAssumesProvesValidatesDepends On
apply_faithfulSMul 📖mathematicalFaithfulSMul
AddAut
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MulAction.toSemigroupAction
applyMulAction
AddEquiv.ext
smul_def 📖mathematicalAddAut
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MulAction.toSemigroupAction
applyMulAction
DFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike

Equiv.Perm

Definitions

NameCategoryTheorems
applyMulAction 📖CompOp
40 mathmath: smul_def, alternatingGroup.isPreprimitive_of_three_le_card, Set.powersetCard.isPretransitive, exists_mem_stabilizer_smul_eq, DomMulAct.mem_stabilizer_iff, exists_mem_stabilizer_isThreeCycle_of_two_lt_ncard, AlternatingGroup.isPreprimitive_of_three_le_card, alternatingGroup.isCoatom_stabilizer_singleton, mem_closure_isSwap, Set.powersetCard.isPretransitive_alternatingGroup, alternatingGroup.stabilizer.surjective_toPerm, finite_compl_fixedBy_swap, swap_mem_stabilizer, IsSwap.finite_compl_fixedBy, stabilizer_isPreprimitive, applyFaithfulSMul, swap_mem_closure_isSwap, Equiv.swap_mem_stabilizer, AlternatingGroup.isMultiplyPretransitive, alternatingGroup.exists_mem_stabilizer_smul_eq, isPretransitive_of_isCycle_mem, exists_mem_stabilizer_isThreeCycle, instIsPreprimitive, AlternatingGroup.isPretransitive_of_three_le_card, alternatingGroup.stabilizer_isPreprimitive, mem_closure_isSwap', DomMulAct.stabilizerMulEquiv_apply, alternatingGroup.isCoatom_stabilizer, Set.powersetCard.isPreprimitive_perm, isCoatom_stabilizer, Set.powersetCard.isPreprimitive_alternatingGroup, alternatingGroup.isPretransitive_of_three_le_card, instIsPretransitive, alternatingGroup.isMultiplyPretransitive, stabilizer.surjective_toPerm, isCoatom_stabilizer_of_ncard_lt_ncard_compl, moves_in, ofSubtype_mem_stabilizer, alternatingGroup.isCoatom_stabilizer_of_ncard_lt_ncard_compl, isMultiplyPretransitive

Theorems

NameKindAssumesProvesValidatesDepends On
applyFaithfulSMul 📖mathematicalFaithfulSMul
Equiv.Perm
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MulAction.toSemigroupAction
applyMulAction
Equiv.ext
instIsPretransitive 📖mathematicalMulAction.IsPretransitive
Equiv.Perm
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MulAction.toSemigroupAction
applyMulAction
MulAction.isPretransitive_iff
Equiv.swap_apply_left
smul_def 📖mathematicalEquiv.Perm
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
permGroup
MulAction.toSemigroupAction
applyMulAction
DFunLike.coe
EquivLike.toFunLike
Equiv.instEquivLike

Function.End

Definitions

NameCategoryTheorems
applyAddAction 📖CompOp
applyMulAction 📖CompOp
2 mathmath: smul_def, apply_FaithfulSMul

Theorems

NameKindAssumesProvesValidatesDepends On
apply_FaithfulSMul 📖mathematicalFaithfulSMul
Function.End
SemigroupAction.toSMul
Monoid.toSemigroup
instMonoidEnd
MulAction.toSemigroupAction
applyMulAction
mul_def 📖mathematicalFunction.End
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoidEnd
one_def 📖mathematicalFunction.End
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoidEnd
smul_def 📖mathematicalFunction.End
SemigroupAction.toSMul
Monoid.toSemigroup
instMonoidEnd
MulAction.toSemigroupAction
applyMulAction

MulAction

Definitions

NameCategoryTheorems
ofEndHom 📖CompOp
toEndHom 📖CompOp
1 mathmath: Action.ofMulAction_ρ
toPermHom 📖CompOp
5 mathmath: toPermHom_apply, Subgroup.normalCore_eq_ker, Polynomial.Splits.toPermHom_apply_eq_one_or_isSwap_of_ncard_le_of_mem_inertia, Polynomial.Splits.surjective_toPermHom_of_iSup_inertia_eq_top, coe_toPermHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toPermHom 📖mathematicalDFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
MonoidHom.instFunLike
toPermHom
toPerm
toPermHom_apply 📖mathematicalDFunLike.coe
MonoidHom
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
MonoidHom.instFunLike
toPermHom
toPerm
toPerm_one 📖mathematicaltoPerm
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Equiv.Perm
Equiv.Perm.instOne
Equiv.Perm.ext
one_smul

MulAut

Definitions

NameCategoryTheorems
applyMulAction 📖CompOp
3 mathmath: Sylow.coe_smul, smul_def, apply_faithfulSMul
applyMulDistribMulAction 📖CompOp
8 mathmath: Subgroup.conj_smul_subgroupOf, Subgroup.Normal.conj_smul_eq_self, Subgroup.conj_smul_le_of_le, Sylow.coe_subgroup_smul, IsGalois.map_fixingSubgroup, Subgroup.conj_smul_eq_self_of_mem, MulAction.IwasawaStructure.is_conj, Sylow.smul_def

Theorems

NameKindAssumesProvesValidatesDepends On
apply_faithfulSMul 📖mathematicalFaithfulSMul
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MulAction.toSemigroupAction
applyMulAction
MulEquiv.ext
smul_def 📖mathematicalMulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
MulAction.toSemigroupAction
applyMulAction
DFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike

MulDistribMulAction

Definitions

NameCategoryTheorems
toMulAut 📖CompOp
1 mathmath: toMulAut_apply
toMulEquiv 📖CompOp
5 mathmath: Subgroup.equivSMul_apply_coe, toMulEquiv_apply, toMulEquiv_symm_apply, toMulAut_apply, Subgroup.equivSMul_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
toMulAut_apply 📖mathematicalDFunLike.coe
MonoidHom
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
MonoidHom.instFunLike
toMulAut
toMulEquiv
toMulEquiv_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
toMulEquiv
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
toMulAction
toMulEquiv_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
toMulEquiv
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
toMulAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid

(root)

Definitions

NameCategoryTheorems
mulAutArrow 📖CompOp
4 mathmath: mulAutArrow_apply_apply, mulAutArrow_apply_symm_apply, CategoryTheory.ActionCategory.curry_apply_left, CategoryTheory.ActionCategory.curry_apply_right

Theorems

NameKindAssumesProvesValidatesDepends On
mulAutArrow_apply_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Pi.monoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
Pi.instMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
MonoidHom.instFunLike
mulAutArrow
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
arrowMulDistribMulAction
Group.toDivisionMonoid
mulAutArrow_apply_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Pi.monoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
MonoidHom
MulAut
Pi.instMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAut.instGroup
MonoidHom.instFunLike
mulAutArrow
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
arrowMulDistribMulAction
Group.toDivisionMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid

---

← Back to Index