Documentation Verification Report

Faithful

πŸ“ Source: Mathlib/Algebra/Group/Action/Faithful.lean

Statistics

MetricCount
DefinitionsFaithfulSMul, FaithfulVAdd
2
Theoremsto_faithfulVAdd_addOpposite, faithfulVAdd, eq_of_smul_eq_smul, tower_bot, trans, eq_of_vadd_eq_vadd, tower_bot, trans, to₁₂₃, to_faithfulSMul_mulOpposite, to_faithfulSMul_mulOpposite, faithfulSMul, to₁₂₃, faithfulSMul_iff, faithfulSMul_iff_injective_smul_one, faithfulVAdd_iff, faithfulVAdd_iff_injective_vadd_zero, instFaithfulSMul, instFaithfulSMulMulOpposite, instFaithfulSMulMulOppositeOfIsLeftCancelMul, instFaithfulSMulMulOpposite_1, instFaithfulSMulOfIsRightCancelMul, instFaithfulVAdd, instFaithfulVAddAddOpposite, instFaithfulVAddAddOppositeOfIsLeftCancelAdd, instFaithfulVAddOfIsRightCancelAdd, smul_left_injective', vadd_left_injective'
28
Total30

AddLeftCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
to_faithfulVAdd_addOpposite πŸ“–mathematicalβ€”FaithfulVAdd
AddOpposite
Add.toVAddAddOpposite
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
toAddMonoid
β€”instFaithfulVAddAddOppositeOfIsLeftCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd

AddRightCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
faithfulVAdd πŸ“–mathematicalβ€”FaithfulVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
toAddMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”instFaithfulVAddOfIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd

FaithfulSMul

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_smul_eq_smul πŸ“–β€”β€”β€”β€”β€”
tower_bot πŸ“–mathematicalβ€”FaithfulSMulβ€”faithfulSMul_iff_injective_smul_one
Function.Injective.of_comp
smul_assoc
one_smul
trans πŸ“–mathematicalβ€”FaithfulSMulβ€”smul_assoc
one_smul
faithfulSMul_iff_injective_smul_one

FaithfulVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_vadd_eq_vadd πŸ“–β€”HVAdd.hVAdd
instHVAdd
β€”β€”β€”
tower_bot πŸ“–mathematicalβ€”FaithfulVAddβ€”faithfulVAdd_iff_injective_vadd_zero
Function.Injective.of_comp
vadd_assoc
zero_vadd
trans πŸ“–mathematicalβ€”FaithfulVAddβ€”faithfulVAdd_iff_injective_vadd_zero
vadd_assoc
zero_vadd

IsScalarTower

Theorems

NameKindAssumesProvesValidatesDepends On
to₁₂₃ πŸ“–mathematicalβ€”IsScalarTowerβ€”smul_left_injective'
smul_assoc

LeftCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
to_faithfulSMul_mulOpposite πŸ“–mathematicalβ€”FaithfulSMul
MulOpposite
Mul.toSMulMulOpposite
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
toMonoid
β€”instFaithfulSMulMulOppositeOfIsLeftCancelMul
LeftCancelSemigroup.toIsLeftCancelMul

LefttCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
to_faithfulSMul_mulOpposite πŸ“–mathematicalβ€”FaithfulSMul
MulOpposite
Mul.toSMulMulOpposite
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
LeftCancelMonoid.toMonoid
β€”LeftCancelMonoid.to_faithfulSMul_mulOpposite

RightCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
faithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
SemigroupAction.toSMul
Monoid.toSemigroup
toMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”instFaithfulSMulOfIsRightCancelMul
RightCancelSemigroup.toIsRightCancelMul

VAddAssocClass

Theorems

NameKindAssumesProvesValidatesDepends On
to₁₂₃ πŸ“–mathematicalβ€”VAddAssocClassβ€”vadd_left_injective'
vadd_assoc

(root)

Definitions

NameCategoryTheorems
FaithfulSMul πŸ“–CompData
92 mathmath: RatFunc.instFaithfulSMulPolynomialLaurentSeries, Sum.FaithfulSMulLeft, LefttCancelMonoid.to_faithfulSMul_mulOpposite, Prod.faithfulSMulRight, FaithfulSMul.of_field_isFractionRing, IsDedekindDomain.HeightOneSpectrum.instFaithfulSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, faithfulSMul_iff_algebraMap_injective, instFaithfulSMulNatOfCharZero, Module.Free.instFaithfulSMulOfNontrivial, Ideal.Quotient.instFaithfulSMul, Subsemiring.instFaithfulSMulSubtypeMem, Ring.instFaithfulSMulNormalClosure, Pi.faithfulSMul_at, Set.powersetCard.faithfulSMul, DomMulAct.instFaithfulSMulForallOfNontrivial, MvPolynomial.faithfulSMul, NoZeroSMulDivisors.iff_faithfulSMul, LeftCancelMonoid.to_faithfulSMul_mulOpposite, Equiv.faithfulSMul, FaithfulSMul.of_injective, Subring.instFaithfulSMulSubtypeMem, instFaithfulSMulOfIsRightCancelMul, Monoid.PushoutI.NormalWord.instFaithfulSMul, IsFractionRing.instFaithfulSMul, SkewMonoidAlgebra.instFaithfulSMul, MonoidAlgebra.faithfulSMul, ContinuousLinearMap.applyFaithfulSMul, RightCancelMonoid.faithfulSMul, Module.FaithfullyFlat.faithfulSMul, Finsupp.instFaithfulSMulOfNonempty, IsGaloisGroup.faithful, instFaithfulSMulIntOfCharZero, Sum.FaithfulSMulRight, RingHom.applyFaithfulSMul, HNNExtension.NormalWord.instFaithfulSMul_1, RelEmbedding.apply_faithfulSMul, Equiv.Perm.applyFaithfulSMul, Subfield.instFaithfulSMulSubtypeMem, HNNExtension.NormalWord.instFaithfulSMul, IntermediateField.instFaithfulSMulSubtypeMem, Submonoid.faithfulSMul, AddMonoidAlgebra.faithfulSMul, RelIso.apply_faithfulSMul, RatFunc.faithfulSMul, Module.IsTorsionFree.to_faithfulSMul, Subalgebra.instFaithfulSMulSubtypeMem, Sigma.FaithfulSMul', IsLeftCancelMulZero.toFaithfulSMul_opposite, AddAut.apply_faithfulSMul, Subalgebra.inclusion.faithfulSMul, AddMonoid.End.applyFaithfulSMul, Module.isTorsionFree_iff_faithfulSMul, Algebra.Presentation.instFaithfulSMulCore, Prod.faithfulSMulLeft, Module.annihilator_eq_bot, instFaithfulSMul, instFaithfulSMul_1, Module.Invertible.instFaithfulSMul, IsAzumaya.toFaithfulSMul, Module.End.apply_faithfulSMul, instFaithfulSMulPolynomial, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Localization.instFaithfulSMulAtPrimeOfNoZeroDivisors, Units.instFaithfulSMul, faithfulSMul_iff_injective_smul_one, IsRightCancelMulZero.faithfulSMul, IsLocalization.AtPrime.faithfulSMul, faithfulSMul_iff, FaithfulSMul.trans, Monoid.PushoutI.NormalWord.instFaithfulSMul_2, AlgEquiv.apply_faithfulSMul, Valued.instFaithfulSMulCompletionOfUniformContinuousConstSMul, Polynomial.faithfulSMul, RingAut.apply_faithfulSMul, Option.instFaithfulSMul, instFaithfulSMulMulOpposite_1, IntermediateField.algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, Finsupp.faithfulSMul, MulAut.apply_faithfulSMul, Algebra.IsAlgebraic.faithfulSMul_tower_top, RelHom.apply_faithfulSMul, FractionRing.instFaithfulSMul, instFaithfulSMulMulOppositeOfIsLeftCancelMul, FaithfulSMul.tower_bot, Subsemiring.faithfulSMul, Monoid.PushoutI.NormalWord.instFaithfulSMul_1, Subgroup.instFaithfulSMulSubtypeMem, RegularWreathProduct.instFaithfulSMulProdOfNonempty, instFaithfulSMulMulOpposite, LinearEquiv.apply_faithfulSMul, MvPolynomial.instFaithfulSMul, Function.End.apply_FaithfulSMul
FaithfulVAdd πŸ“–CompData
24 mathmath: Equiv.faithfulVAdd, Sigma.FaithfulVAdd', instFaithfulVAddAddOpposite, FaithfulVAdd.tower_bot, Option.instFaithfulVAdd, AddUnits.instFaithfulVAdd, Prod.faithfulVAddRight, AddSubgroup.instFaithfulVAddSubtypeMem, Set.powersetCard.faithfulVAdd, faithfulVAdd_iff_injective_vadd_zero, Sum.FaithfulVAddRight, Prod.faithfulVAddLeft, Pi.faithfulVAdd_at, DomAddAct.instFaithfulVAddForallOfNontrivial, AddSubmonoid.faithfulVAdd, AddRightCancelMonoid.faithfulVAdd, instFaithfulVAddAddOppositeOfIsLeftCancelAdd, AddLeftCancelMonoid.to_faithfulVAdd_addOpposite, faithfulVAdd_iff, Submodule.instFaithfulVAddSubtypeMem, instFaithfulVAddOfIsRightCancelAdd, FaithfulVAdd.trans, instFaithfulVAdd, Sum.FaithfulVAddLeft

Theorems

NameKindAssumesProvesValidatesDepends On
faithfulSMul_iff πŸ“–mathematicalβ€”FaithfulSMul
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”FaithfulSMul.eq_of_smul_eq_smul
one_smul
inv_inv
eq_inv_of_mul_eq_one_left
SemigroupAction.mul_smul
faithfulSMul_iff_injective_smul_one πŸ“–mathematicalβ€”FaithfulSMul
MulOne.toOne
MulOneClass.toMulOne
β€”one_mul
smul_mul_assoc
faithfulVAdd_iff πŸ“–mathematicalβ€”FaithfulVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”FaithfulVAdd.eq_of_vadd_eq_vadd
zero_vadd
neg_neg
eq_neg_of_add_eq_zero_left
AddSemigroupAction.add_vadd
neg_vadd_eq_iff
faithfulVAdd_iff_injective_vadd_zero πŸ“–mathematicalβ€”FaithfulVAdd
HVAdd.hVAdd
instHVAdd
AddZero.toZero
AddZeroClass.toAddZero
β€”zero_add
vadd_add_assoc
instFaithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
MulOne.toMul
MulOneClass.toMulOne
β€”mul_one
instFaithfulSMulMulOpposite πŸ“–mathematicalβ€”FaithfulSMul
MulOpposite
Mul.toSMulMulOpposite
MulOne.toMul
MulOneClass.toMulOne
β€”one_mul
instFaithfulSMulMulOppositeOfIsLeftCancelMul πŸ“–mathematicalβ€”FaithfulSMul
MulOpposite
Mul.toSMulMulOpposite
β€”β€”
instFaithfulSMulMulOpposite_1 πŸ“–mathematicalβ€”FaithfulSMul
MulOpposite
MulOpposite.instSMul
β€”FaithfulSMul.eq_of_smul_eq_smul
instFaithfulSMulOfIsRightCancelMul πŸ“–mathematicalβ€”FaithfulSMulβ€”β€”
instFaithfulVAdd πŸ“–mathematicalβ€”FaithfulVAdd
Add.toVAdd
AddZero.toAdd
AddZeroClass.toAddZero
β€”add_zero
instFaithfulVAddAddOpposite πŸ“–mathematicalβ€”FaithfulVAdd
AddOpposite
Add.toVAddAddOpposite
AddZero.toAdd
AddZeroClass.toAddZero
β€”zero_add
instFaithfulVAddAddOppositeOfIsLeftCancelAdd πŸ“–mathematicalβ€”FaithfulVAdd
AddOpposite
Add.toVAddAddOpposite
β€”β€”
instFaithfulVAddOfIsRightCancelAdd πŸ“–mathematicalβ€”FaithfulVAdd
Add.toVAdd
β€”β€”
smul_left_injective' πŸ“–β€”β€”β€”β€”FaithfulSMul.eq_of_smul_eq_smul
vadd_left_injective' πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
β€”FaithfulVAdd.eq_of_vadd_eq_vadd

---

← Back to Index